126,500 research outputs found

    Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius

    Get PDF
    The (Perfect) Matching Cut problem is to decide if a graph G has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of G. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most 2 and to (P?+sP?)-free graphs. We also show that the complexity of Maximum Matching Cut differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for 2P?-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and H-free graphs

    Dichotomies for Maximum Matching Cut: HH-Freeness, Bounded Diameter, Bounded Radius

    Full text link
    The (Perfect) Matching Cut problem is to decide if a graph GG has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of GG. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most 22 and to (P6+sP2)(P_6 + sP_2)-free graphs. We also show that the complexity of Maximum Matching Cut} differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for 2P32P_3-free graphs of diameter 3 and radius 2 and for line graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and HH-free graphs.Comment: arXiv admin note: text overlap with arXiv:2207.0709

    On Adaptive Algorithms for Maximum Matching

    Get PDF
    In the fundamental Maximum Matching problem the task is to find a maximum cardinality set of pairwise disjoint edges in a given undirected graph. The fastest algorithm for this problem, due to Micali and Vazirani, runs in time O(sqrt{n}m) and stands unbeaten since 1980. It is complemented by faster, often linear-time, algorithms for various special graph classes. Moreover, there are fast parameterized algorithms, e.g., time O(km log n) relative to tree-width k, which outperform O(sqrt{n}m) when the parameter is sufficiently small. We show that the Micali-Vazirani algorithm, and in fact any algorithm following the phase framework of Hopcroft and Karp, is adaptive to beneficial input structure. We exhibit several graph classes for which such algorithms run in linear time O(n+m). More strongly, we show that they run in time O(sqrt{k}m) for graphs that are k vertex deletions away from any of several such classes, without explicitly computing an optimal or approximate deletion set; before, most such bounds were at least Omega(km). Thus, any phase-based matching algorithm with linear-time phases obliviously interpolates between linear time for k=O(1) and the worst case of O(sqrt{n}m) when k=Theta(n). We complement our findings by proving that the phase framework by itself still allows Omega(sqrt{n}) phases, and hence time Omega(sqrt{n}m), even on paths, cographs, and bipartite chain graphs

    Tight Approximations for Graphical House Allocation

    Full text link
    The Graphical House Allocation (GHA) problem asks: how can nn houses (each with a fixed non-negative value) be assigned to the vertices of an undirected graph GG, so as to minimize the sum of absolute differences along the edges of GG? This problem generalizes the classical Minimum Linear Arrangement problem, as well as the well-known House Allocation Problem from Economics. Recent work has studied the computational aspects of GHA and observed that the problem is NP-hard and inapproximable even on particularly simple classes of graphs, such as vertex disjoint unions of paths. However, the dependence of any approximations on the structural properties of the underlying graph had not been studied. In this work, we give a nearly complete characterization of the approximability of GHA. We present algorithms to approximate the optimal envy on general graphs, trees, planar graphs, bounded-degree graphs, and bounded-degree planar graphs. For each of these graph classes, we then prove matching lower bounds, showing that in each case, no significant improvement can be attained unless P = NP. We also present general approximation ratios as a function of structural parameters of the underlying graph, such as treewidth; these match the tight upper bounds in general, and are significantly better approximations for many natural subclasses of graphs. Finally, we investigate the special case of bounded-degree trees in some detail. We first refute a conjecture by Hosseini et al. [2023] about the structural properties of exact optimal allocations on binary trees by means of a counterexample on a depth-33 complete binary tree. This refutation, together with our hardness results on trees, might suggest that approximating the optimal envy even on complete binary trees is infeasible. Nevertheless, we present a linear-time algorithm that attains a 33-approximation on complete binary trees

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)University of Warwick. Centre for Discrete Mathematics and its Applications (DIMAP)GBUnited Kingdo

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure
    corecore