39 research outputs found

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%

    Facets for Art Gallery Problems

    Full text link
    The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The problem is known to be NP-hard, and its inherent continuous structure (with both the set of points that need to be guarded and the set of points that can be used for guarding being uncountably infinite) makes it difficult to apply a straightforward formulation as an Integer Linear Program. We use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded. Particularly useful are cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time. We also characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our approach. Our cutting plane technique yields a significant improvement in terms of speed and solution quality due to considerably reduced integrality gaps as compared to the approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl

    Approximative Terrain Guarding with Given Number of Guards

    Get PDF
    Guarding a surface is a well known optimization problem of the visibility site analysis and has many applications. The basic problem is searching for the minimum number of guards needed to guard (see) the entire surface. More realistic is the guarding where the number of guards is upward limited and the optimization problem is to search for their locations in order to guard as much surface as possible. In the paper this problem is treated in detail. Several known heuristics (greedy add, greedy add with swap and stingy drop) are revised and a new technique called solution improving technique is proposed. The technique improves the results of the known algorithms and is used in indirect solving of the problem. Tests on 44 DEMs from USGS DEM Repository showed that our technique yields comparative results for smaller number of guards and better results for higher number of guards

    Terrain visibility optimization problems

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 2001.Thesis (Master's) -- Bilkent University, 2001.Includes bibliographical references leaves 92-96The Art Gallery Problem is the problem of determining the number of observers necessary to cover an art gallery such that every point is seen by at least one observer. This problem is well known and has a linear time solution for the 2 dimensional case, but little is known about 3-D case. In this thesis, the dominance relationship between vertex guards and point guards is searched and found that a convex polyhedron can be constructed such that it can be covered by some number of point guards which is one third of the number of the vertex guards needed. A new algorithm which tests the visibility of two vertices is constructed for the discrete case. How to compute the visible region of a vertex is shown for the continuous case. Finally, several potential applications of geometric terrain visibility in geographic information systems and coverage problems related with visibility are presented.DĂĽger, Ä°brahimM.S

    Two-Dimensional Pursuit-Evasion in a Compact Domain with Piecewise Analytic Boundary

    Full text link
    In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show that one pursuer has a winning strategy in any CAT(0) space under this restrictive capture criterion. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.Comment: 21 pages, 6 figure
    corecore