44,214 research outputs found

    Document Filtering for Long-tail Entities

    Full text link
    Filtering relevant documents with respect to entities is an essential task in the context of knowledge base construction and maintenance. It entails processing a time-ordered stream of documents that might be relevant to an entity in order to select only those that contain vital information. State-of-the-art approaches to document filtering for popular entities are entity-dependent: they rely on and are also trained on the specifics of differentiating features for each specific entity. Moreover, these approaches tend to use so-called extrinsic information such as Wikipedia page views and related entities which is typically only available only for popular head entities. Entity-dependent approaches based on such signals are therefore ill-suited as filtering methods for long-tail entities. In this paper we propose a document filtering method for long-tail entities that is entity-independent and thus also generalizes to unseen or rarely seen entities. It is based on intrinsic features, i.e., features that are derived from the documents in which the entities are mentioned. We propose a set of features that capture informativeness, entity-saliency, and timeliness. In particular, we introduce features based on entity aspect similarities, relation patterns, and temporal expressions and combine these with standard features for document filtering. Experiments following the TREC KBA 2014 setup on a publicly available dataset show that our model is able to improve the filtering performance for long-tail entities over several baselines. Results of applying the model to unseen entities are promising, indicating that the model is able to learn the general characteristics of a vital document. The overall performance across all entities---i.e., not just long-tail entities---improves upon the state-of-the-art without depending on any entity-specific training data.Comment: CIKM2016, Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 201

    Same but Different: Distant Supervision for Predicting and Understanding Entity Linking Difficulty

    Full text link
    Entity Linking (EL) is the task of automatically identifying entity mentions in a piece of text and resolving them to a corresponding entity in a reference knowledge base like Wikipedia. There is a large number of EL tools available for different types of documents and domains, yet EL remains a challenging task where the lack of precision on particularly ambiguous mentions often spoils the usefulness of automated disambiguation results in real applications. A priori approximations of the difficulty to link a particular entity mention can facilitate flagging of critical cases as part of semi-automated EL systems, while detecting latent factors that affect the EL performance, like corpus-specific features, can provide insights on how to improve a system based on the special characteristics of the underlying corpus. In this paper, we first introduce a consensus-based method to generate difficulty labels for entity mentions on arbitrary corpora. The difficulty labels are then exploited as training data for a supervised classification task able to predict the EL difficulty of entity mentions using a variety of features. Experiments over a corpus of news articles show that EL difficulty can be estimated with high accuracy, revealing also latent features that affect EL performance. Finally, evaluation results demonstrate the effectiveness of the proposed method to inform semi-automated EL pipelines.Comment: Preprint of paper accepted for publication in the 34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019

    The Pulse of News in Social Media: Forecasting Popularity

    Full text link
    News articles are extremely time sensitive by nature. There is also intense competition among news items to propagate as widely as possible. Hence, the task of predicting the popularity of news items on the social web is both interesting and challenging. Prior research has dealt with predicting eventual online popularity based on early popularity. It is most desirable, however, to predict the popularity of items prior to their release, fostering the possibility of appropriate decision making to modify an article and the manner of its publication. In this paper, we construct a multi-dimensional feature space derived from properties of an article and evaluate the efficacy of these features to serve as predictors of online popularity. We examine both regression and classification algorithms and demonstrate that despite randomness in human behavior, it is possible to predict ranges of popularity on twitter with an overall 84% accuracy. Our study also serves to illustrate the differences between traditionally prominent sources and those immensely popular on the social web

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201
    corecore