33 research outputs found

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Bojańczyk to express some asymptotic properties) over ω-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata studied by Bojańczyk and Colcombet, and a lower complexity bound for an alternating variant of ωBS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation σ on tree languages with the property that σ(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least ω square.W niniejszej rozprawie rozważane są języki nieskończonych słów lub drzew definiowane poprzez automaty różnych typów lub formuły różnych logik. Pytamy o najwyższą możliwą pozycję w hierarchii borelowskiej lub rzutowej zajmowaną przez zbiory definiowane w danym formalizmie. Odpowiedź na to pytanie jest nazywana złożonością topologiczną formalizmu.Przedstawiony został dowód, że złożonością topologiczną Logiki Monadycznej Drugiego Rzędu rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Bojańczyka w celu umożliwienia wyrażania własności asymptotycznych) na słowach nieskończonych jest cała hierarchia rzutowa. Obliczone zostały również złożoności topologiczne klas języków rozpoznawanych przez niedeterministyczne ωB-, ωS- i ωBS-automaty rozważane przez Bojańczyka i Colcombet'a, oraz zostało podane dolne ograniczenie złożoności wariantu alternującego ωBS-automatów.Zaprezentowane zostały wyniki dotyczące języków podwójnie jednoznacznych, tzn. języków rozpoznawanych przez jednoznaczne automaty parzystości na drzewach, których dopełnienia również są rozpoznawane przez jednoznaczne automaty parzystości. Podany został przykład podwójnie jednoznacznego języka drzew G, który jest analityczny-zupełny. Została wprowadzona operacja σ na językach drzew taka, że język σ(L) jest topologicznie bardziej złożony niż jakikolwiek język należący do sigma-algebry generowanej przez języki redukujące się w sposób ciągły do języka L. W wyniku zastosowania powyższej operacji do języka podwójnie jednoznacznego otrzymujemy język podwójnie jednoznaczny. Zostało pokazane, że kolejne iteracje aplikacji powyższej operacji dają coraz bardziej złożone języki. Została również wprowadzona druga operacja, która umożliwia krok graniczny iteracji. Używając obydwu powyższych operacji można skonstruować ciąg długości ω kwadrat złożony z języków podwójnie jednoznacznych o coraz większej złożoności

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    The Wadge Hierarchy: Beyond Borel Sets

    Get PDF

    Multioperator Weighted Monadic Datalog

    Get PDF
    In this thesis we will introduce multioperator weighted monadic datalog (mwmd), a formal model for specifying tree series, tree transformations, and tree languages. This model combines aspects of multioperator weighted tree automata (wmta), weighted monadic datalog (wmd), and monadic datalog tree transducers (mdtt). In order to develop a rich theory we will define multiple versions of semantics for mwmd and compare their expressiveness. We will study normal forms and decidability results of mwmd and show (by employing particular semantic domains) that the theory of mwmd subsumes the theory of both wmd and mdtt. We conclude this thesis by showing that mwmd even contain wmta as a syntactic subclass and present results concerning this subclass
    corecore