736 research outputs found

    On the Link Between Strongly Connected Iteration Graphs and Chaotic Boolean Discrete-Time Dynamical Systems

    Get PDF
    Chaotic functions are characterized by sensitivity to initial conditions, transitivity, and regularity. Providing new functions with such properties is a real challenge. This work shows that one can associate with any Boolean network a continuous function, whose discrete-time iterations are chaotic if and only if the iteration graph of the Boolean network is strongly connected. Then, sufficient conditions for this strong connectivity are expressed on the interaction graph of this network, leading to a constructive method of chaotic function computation. The whole approach is evaluated in the chaos-based pseudo-random number generation context

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    On the Collision Property of Chaotic Iterations Based Post-Treatments over Cryptographic Pseudorandom Number Generator

    Get PDF
    International audienceThere is not a proper mathematical definition of chaos, we have instead a quite big amount of definitions, each of one describes chaos in a more or less general context. Taking in account this, it is clear why it is hard to design an algorithm that produce random numbers, a kind of algorithm that could have plenty of concrete appliceautifat (anul)d bions. However we must use a finite state machine (e.g. a laptop) to produce such a sequence of random numbers, thus it is convenient, for obvious reasons, to redefine those aimed sequences as pseudorandom; also problems arise with floating point arithmetic if one wants to recover some real chaotic property (i.e. properties from functions defined on the real numbers). All this considerations are synthesized in the problem of the Pseudorandom number generators (PRNGs). A solution to these obstacles may be to post-operate on existing PRNGs to improve their performances, using the so-called chaotic iterations, i.e., specific iterations of a boolean function and a shift operator that use the inputted generator. This approach leads to a mathematical description of such PRNGs as discrete dynamical systems, on which chaos properties can be investigated using mathematical topology and measure theory. Such properties are well-formulated, and they allow us to characterize which functions improves the sensitivity to the seed, the expansivity, the ergodicity, or the topological mixing of the generator resulting from such a post-processing. Experience shows that choosing relevant boolean functions in these chaotic iterations improves the randomness of the inputted generator, for instance when considering the number of statistical tests of randomness passed successfully. If we focus on the cryptographical application of PRNGs, there are two main classical notions to be considered, namely collision and avalanche effect. In this article, we recall the chaotic properties of the proposed post-treatment and we study the collision property in families of pseudorandom sequences produced by this process

    Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    Full text link
    We analyse a model of fixed in-degree Random Boolean Networks in which the fraction of input-receiving nodes is controlled by a parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control, and as rich as the one of general Boolean networks. Biologically, it is justified on abstract grounds by the fact that all existing interactions play a dynamical role. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma, this graph ensemble shows a phase transition that separates a tree-like graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact we provide analytical estimates of the maximum period starting from topological considerations

    Monotone and near-monotone biochemical networks

    Get PDF
    Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion

    Complex Systems: Nonlinearity and Structural Complexity in spatially extended and discrete systems

    Get PDF
    Resumen Esta Tesis doctoral aborda el estudio de sistemas de muchos elementos (sistemas discretos) interactuantes. La fenomenología presente en estos sistemas esta dada por la presencia de dos ingredientes fundamentales: (i) Complejidad dinámica: Las ecuaciones del movimiento que rigen la evolución de los constituyentes son no lineales de manera que raramente podremos encontrar soluciones analíticas. En el espacio de fases de estos sistemas pueden coexistir diferentes tipos de trayectorias dinámicas (multiestabilidad) y su topología puede variar enormemente dependiendo de dos parámetros usados en las ecuaciones. La conjunción de dinámica no lineal y sistemas de muchos grados de libertad (como los que aquí se estudian) da lugar a propiedades emergentes como la existencia de soluciones localizadas en el espacio, sincronización, caos espacio-temporal, formación de patrones, etc... (ii) Complejidad estructural: Se refiere a la existencia de un alto grado de aleatoriedad en el patrón de las interacciones entre los componentes. En la mayoría de los sistemas estudiados esta aleatoriedad se presenta de forma que la descripción de la influencia del entorno sobre un único elemento del sistema no puede describirse mediante una aproximación de campo medio. El estudio de estos dos ingredientes en sistemas extendidos se realizará de forma separada (Partes I y II de esta Tesis) y conjunta (Parte III). Si bien en los dos primeros casos la fenomenología introducida por cada fuente de complejidad viene siendo objeto de amplios estudios independientes a lo largo de los últimos años, la conjunción de ambas da lugar a un campo abierto y enormemente prometedor, donde la interdisciplinariedad concerniente a los campos de aplicación implica un amplio esfuerzo de diversas comunidades científicas. En particular, este es el caso del estudio de la dinámica en sistemas biológicos cuyo análisis es difícil de abordar con técnicas exclusivas de la Bioquímica, la Física Estadística o la Física Matemática. En definitiva, el objetivo marcado en esta Tesis es estudiar por separado dos fuentes de complejidad inherentes a muchos sistemas de interés para, finalmente, estar en disposición de atacar con nuevas perspectivas problemas relevantes para la Física de procesos celulares, la Neurociencia, Dinámica Evolutiva, etc..
    corecore