309 research outputs found

    Space-Time Coding and Space-Time Channel Modelling for Wireless Communications

    No full text
    In this thesis we investigate the effects of the physical constraints such as antenna aperture size, antenna geometry and non-isotropic scattering distribution parameters (angle of arrival/departure and angular spread) on the performance of coherent and non-coherent space-time coded wireless communication systems. First, we derive analytical expressions for the exact pairwise error probability (PEP) and PEP upper-bound of coherent and non-coherent space-time coded systems operating over spatially correlated fading channels using a moment-generating function-based approach. These analytical expressions account for antenna spacing, antenna geometries and scattering distribution models. Using these new PEP expressions, the degree of the effect of antenna spacing, antenna geometry and angular spread is quantified on the diversity advantage (robustness) given by a space-time code. It is shown that the number of antennas that can be employed in a fixed antenna aperture without diminishing the diversity advantage of a space-time code is determined by the size of the antenna aperture, antenna geometry and the richness of the scattering environment. ¶ In realistic channel environments the performance of space-time coded multiple-input multiple output (MIMO) systems is significantly reduced due to non-ideal antenna placement and non-isotropic scattering. In this thesis, by exploiting the spatial dimension of a MIMO channel we introduce the novel use of linear spatial precoding (or power-loading) based on fixed and known parameters of MIMO channels to ameliorate the effects of non-ideal antenna placement on the performance of coherent and non-coherent space-time codes. ..

    Performance of a non-orthogonal STBC over correlative fading channels

    Get PDF
    [[abstract]]It has been recently shown that, for non-orthogonal space-time block code (STBC), the multiple-input multiple-output (MIMO) maximum-likelihood (ML) metric can also be decoupled into single-input single-output (SISO) ML metrics for decoding simplification just as for orthogonal STBC. In this work, we utilized the decoupled metrics of a non-orthogonal STBC to derive the symbol error rate (SER) in correlative fading channels and show that, when the non-orthogonal code is generated by converting an orthogonal code using proper precoding, the conversion will improve the SER performance when the MIMO channels are correlated.[[conferencetype]]國際[[conferencedate]]20080604~20080606[[booktype]]紙本[[conferencelocation]]Hoi an, Vietna

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    A new subspace method for blind estimation of selective MIMO-STBC channels

    Get PDF
    In this paper, a new technique for the blind estimation of frequency and/or time-selective multiple-input multiple-output (MIMO) channels under space-time block coding (STBC) transmissions is presented. The proposed method relies on a basis expansion model (BEM) of the MIMO channel, which reduces the number of parameters to be estimated, and includes many practical STBC-based transmission scenarios, such as STBC-orthogonal frequency division multiplexing (OFDM), space-frequency block coding (SFBC), time-reversal STBC, and time-varying STBC encoded systems. Inspired by the unconstrained blind maximum likelihood (UML) decoder, the proposed criterion is a subspace method that efficiently exploits all the information provided by the STBC structure, as well as by the reduced-rank representation of the MIMO channel. The method, which is independent of the specific signal constellation, is able to blindly recover the MIMO channel within a small number of available blocks at the receiver side. In fact, for some particular cases of interest such as orthogonal STBC-OFDM schemes, the proposed technique blindly identifies the channel using just one data block. The complexity of the proposed approach reduces to the solution of a generalized eigenvalue (GEV) problem and its computational cost is linear in the number of sub-channels. An identifiability analysis and some numerical examples illustrating the performance of the proposed algorithm are also providedThis work was supported by the Spanish Government under projects TEC2007-68020-C04-02/TCM (MultiMIMO) and CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS)
    • …
    corecore