358 research outputs found

    On the Limits of Recursively Self-Improving AGI

    Get PDF
    Abstract. Self-improving software has been a goal of computer scientists since the founding of the field of Artificial Intelligence. In this work we analyze limits on computation which might restrict recursive self-improvement. We also introduce Convergence Theory which aims to predict general behavior of RSI systems

    Global Solutions vs. Local Solutions for the AI Safety Problem

    Get PDF
    There are two types of artificial general intelligence (AGI) safety solutions: global and local. Most previously suggested solutions are local: they explain how to align or “box” a specific AI (Artificial Intelligence), but do not explain how to prevent the creation of dangerous AI in other places. Global solutions are those that ensure any AI on Earth is not dangerous. The number of suggested global solutions is much smaller than the number of proposed local solutions. Global solutions can be divided into four groups: 1. No AI: AGI technology is banned or its use is otherwise prevented; 2. One AI: the first superintelligent AI is used to prevent the creation of any others; 3. Net of AIs as AI police: a balance is created between many AIs, so they evolve as a net and can prevent any rogue AI from taking over the world; 4. Humans inside AI: humans are augmented or part of AI. We explore many ideas, both old and new, regarding global solutions for AI safety. They include changing the number of AI teams, different forms of “AI Nanny” (non-self-improving global control AI system able to prevent creation of dangerous AIs), selling AI safety solutions, and sending messages to future AI. Not every local solution scales to a global solution or does it ethically and safely. The choice of the best local solution should include understanding of the ways in which it will be scaled up. Human-AI teams or a superintelligent AI Service as suggested by Drexler may be examples of such ethically scalable local solutions, but the final choice depends on some unknown variables such as the speed of AI progres

    Unpredictability of AI

    Get PDF
    The young field of AI Safety is still in the process of identifying its challenges and limitations. In this paper, we formally describe one such impossibility result, namely Unpredictability of AI. We prove that it is impossible to precisely and consistently predict what specific actions a smarter-than-human intelligent system will take to achieve its objectives, even if we know terminal goals of the system. In conclusion, impact of Unpredictability on AI Safety is discussed

    Can intelligence explode?

    Get PDF
    The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. It took many decades for these ideas to spread from science fiction to popular science magazines and finally to attract the attention of serious philosophers. David Chalmers' (JCS, 2010) article is the first comprehensive philosophical analysis of the singularity in a respected philosophy journal. The motivation of my article is to augment Chalmers' and to discuss some issues not addressed by him, in particular what it could mean for intelligence to explode. In this course, I will (have to) provide a more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity

    What are the ultimate limits to computational techniques: Verifier theory and unverifiability

    Get PDF
    Despite significant developments in proof theory, surprisingly little attention has been devoted to the concept of proof verifiers. In particular, the mathematical community may be interested in studying different types of proof verifiers (people, programs, oracles, communities, superintelligences) as mathematical objects. Such an effort could reveal their properties, their powers and limitations (particularly in human mathematicians), minimum and maximum complexity, as well as self-verification and self-reference issues. We propose an initial classification system for verifiers and provide some rudimentary analysis of solved and open problems in this important domain. Our main contribution is a formal introduction of the notion of unverifiability, for which the paper could serve as a general citation in domains of theorem proving, as well as software and AI verification
    corecore