810 research outputs found

    Alternating register automata on finite words and trees

    Get PDF
    We study alternating register automata on data words and data trees in relation to logics. A data word (resp. data tree) is a word (resp. tree) whose every position carries a label from a finite alphabet and a data value from an infinite domain. We investigate one-way automata with alternating control over data words or trees, with one register for storing data and comparing them for equality. This is a continuation of the study started by Demri, Lazic and Jurdzinski. From the standpoint of register automata models, this work aims at two objectives: (1) simplifying the existent decidability proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable extensions for these models. From the logical perspective, we show that (a) in the case of data words, satisfiability of LTL with one register and quantification over data values is decidable; and (b) the satisfiability problem for the so-called forward fragment of XPath on XML documents is decidable, even in the presence of DTDs and even of key constraints. The decidability is obtained through a reduction to the automata model introduced. This fragment contains the child, descendant, next-sibling and following-sibling axes, as well as data equality and inequality tests

    Beyond Language Equivalence on Visibly Pushdown Automata

    Full text link
    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.Comment: Final version of paper, accepted by LMC
    corecore