68 research outputs found

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Transience and recurrence of random walks on percolation clusters in an ultrametric space

    Full text link
    We study existence of percolation in the hierarchical group of order NN, which is an ultrametric space, and transience and recurrence of random walks on the percolation clusters. The connection probability on the hierarchical group for two points separated by distance kk is of the form ck/Nk(1+δ),δ>1c_k/N^{k(1+\delta)}, \delta>-1, with ck=C0+C1logk+C2kαc_k=C_0+C_1\log k+C_2k^\alpha, non-negative constants C0,C1,C2C_0, C_1, C_2, and α>0\alpha>0. Percolation was proved in Dawson and Gorostiza (2013) for δ0\delta0, with α>2\alpha>2. In this paper we improve the result for the critical case by showing percolation for α>0\alpha>0. We use a renormalization method of the type in the previous paper in a new way which is more intrinsic to the model. The proof involves ultrametric random graphs (described in the Introduction). The results for simple (nearest neighbour) random walks on the percolation clusters are: in the case δ<1\delta<1 the walk is transient, and in the critical case δ=1,C2>0,α>0\delta=1, C_2>0,\alpha>0, there exists a critical αc(0,)\alpha_c\in(0,\infty) such that the walk is recurrent for α<αc\alpha<\alpha_c and transient for α>αc\alpha>\alpha_c. The proofs involve graph diameters, path lengths, and electric circuit theory. Some comparisons are made with behaviours of random walks on long-range percolation clusters in the one-dimensional Euclidean lattice.Comment: 27 page

    Cubulating CAT(0) groups and Property (T) in random groups

    Get PDF
    This thesis considers two properties important to many areas of mathematics: those of cubulation and Property (T). Cubulation played a central role in Agol’s proof of the virtual Haken conjecture, while Property (T) has had an impact on areas such as group theory, ergodic theory, and expander graphs. The aim is to cubulate some examples of groups known in the literature, and prove that many ‘generic’ groups have Property (T). Graphs will be central objects of study throughout this text, and so in Chapter 2 we provide some definitions and note some results. In Chapter 3, we provide a condition on the links of polygonal complexes that allows us to cubulate groups acting properly discontinuously and cocompactly on such complexes. If the group is hyperbolic then this action is also cocompact, hence by Agol’s Theorem the group is virtually special (in the sense of Haglund–Wise); in particular it is linear over Z. We consider some applications of this work. Firstly, we consider the groups classified by [KV10] and [CKV12], which act simply transitively on CAT(0) triangular complexes with the minimal generalized quadrangle as their links, proving that these groups are virtually special. We further apply this theorem by considering generalized triangle groups, in particular a subset of those considered by [CCKW20]. To analyse Property (T) in generic groups, we first need to understand the eigenvalues of some random graphs: this is the content of Chapter 4, in which we analyse the eigenvalues of Erdös–Rényi random bipartite graphs. In particular, we consider p satisfying m1p = (log m2), and let G ~ G(m1, m2, p). We show that with probability tending to 1 as m1 tends to infinity: μ2(A(G)) <=O(sqrt{m2p}). In Chapter 5 we study Property (T) in the (n, k, d) model of random groups: as k tends to infinity this gives the Gromov density model, introduced in [Gro93]. We provide bounds for Property (T) in the k-angular model of random groups, i.e. the (n, k, d) model where k is fixed and n tends to infinity. We also prove that for d > 1/3, a random group in the (n, k, d) model has Property (T) with probability tending to 1 as k tends to infinity, strengthening the results of Zuk and Kotowski–Kotowski, who consider only groups in the (n, 3k, d) model.EPSRC studentshi

    Prime Ideal Theorems and systems of finite character

    Get PDF
    summary:\font\jeden=rsfs7 \font\dva=rsfs10 We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if \text{\jeden S} is a system of finite character then so is the system of all collections of finite subsets of \bigcup \text{\jeden S} meeting a common member of \text{\jeden S}), the Finite Cutset Lemma (a finitary version of the Teichm"uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth's Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma

    How is a Chordal Graph like a Supersolvable Binary Matroid?

    Get PDF
    Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable iff G is chordal (rigid): this is another way to read Dirac's theorem on chordal graphs. Chordal binary matroids are not in general supersolvable. Nevertheless we prove that, for every supersolvable binary matroid M, a maximal chain of modular flats of M canonically determines a chordal graph.Comment: 10 pages, 3 figures, to appear in Discrete Mathematic

    Bindweeds or random walks in random environments on multiplexed trees and their asympotics

    Full text link
    We report on the asymptotic behaviour of a new model of random walk, we term the bindweed model, evolving in a random environment on an infinite multiplexed tree. The term \textit{multiplexed} means that the model can be viewed as a nearest neighbours random walk on a tree whose vertices carry an internal degree of freedom from the finite set {1,...,d}\{1,...,d\}, for some integer dd. The consequence of the internal degree of freedom is an enhancement of the tree graph structure induced by the replacement of ordinary edges by multi-edges, indexed by the set {1,...,d}×{1,...,d}\{1,...,d\}\times\{1,...,d\}. This indexing conveys the information on the internal degree of freedom of the vertices contiguous to each edge. The term \textit{random environment} means that the jumping rates for the random walk are a family of edge-indexed random variables, independent of the natural filtration generated by the random variables entering in the definition of the random walk; their joint distribution depends on the index of each component of the multi-edges. We study the large time asymptotic behaviour of this random walk and classify it with respect to positive recurrence or transience in terms of a specific parameter of the probability distribution of the jump rates. This classifying parameter is shown to coincide with the critical value of a matrix-valued multiplicative cascade on the ordinary tree (\textit{i.e.} the one without internal degrees of freedom attached to the vertices) having the same vertex set as the state space of the random walk. Only results are presented here since the detailed proofs will appear elsewhere
    corecore