121,753 research outputs found

    On the Lattice of p-Consequences

    Get PDF
    This paper is devoted to investigation of the lattice properties of p-consequences. Our main goal is to compare the algebraic features of the lattices composed of all p-consequences and all consequence operations defined on the same propositional language

    Magnetism of Cold Fermionic Atoms on p-Band of an Optical Lattice

    Full text link
    We carry out \textit{ab initio} study of ground state phase diagram of spin-1/2 cold fermionic atoms within two-fold degenerate pp-band of an anisotropic optical lattice. Using the Gutzwiller variational approach, we show that a robust ferromagnetic phase exists for a vast range of band fillings and interacting strengths. The ground state crosses over from spin density wave state to spin-1 Neel state at half filling. Additional harmonic trap will induce spatial separation of varies phases. We also discuss several relevant observable consequences and detection methods. Experimental test of the results reported here may shed some light on the long-standing issue of itinerant ferromagnetism.Comment: 5 pages, 4 figure

    Antiferromagnetism of Zn2_2VO(PO4)2_4)_2 and the dilution with Ti4+^{4+}

    Full text link
    We report static and dynamic properties of the antiferromagnetic compound Zn2_{2}(VO)(PO4_{4})2_{2}, and the consequences of non-magnetic Ti4+^{4+} doping at the V4+^{4+} site. 31^{31}P nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T11/T_1) consistently show the formation of the long-range antiferromagnetic order below TN=3.83.9T_N= 3.8-3.9\,K. The critical exponent β=0.33±0.02\beta=0.33 \pm 0.02 estimated from the temperature dependence of the sublattice magnetization measured by 31^{31}P NMR at 9.4\,MHz is consistent with universality classes of three-dimensional spin models. The isotropic and axial hyperfine couplings between the 31^{31}P nuclei and V4+^{4+} spins are Ahfiso=(9221±100)A_{\rm hf}^{\rm iso} = (9221 \pm 100) Oe/μB\mu_{\rm B} and Ahfax=(1010±50)A_{\rm hf}^{\rm ax} = (1010 \pm 50) Oe/μB\mu_{\rm B}, respectively. Magnetic susceptibility data above 6.5\,K and heat capacity data above 4.5\,K are well described by quantum Monte-Carlo simulations for the Heisenberg model on the square lattice with J7.7J\simeq 7.7\,K. This value of JJ is consistent with the values obtained from the NMR shift, 1/T11/T_1 and electron spin resonance (ESR) intensity analysis. Doping Zn2_2VO(PO4)2_4)_2 with non-magnetic Ti4+^{4+} leads to a marginal increase in the JJ value and the overall dilution of the spin lattice. In contrast to the recent \textit{ab initio} results, we find neither evidence for the monoclinic structural distortion nor signatures of the magnetic one-dimensionality for doped samples with up to 15\% of Ti4+^{4+}. The N\'eel temperature TNT_{\rm N} decreases linearly with increasing the amount of the non-magnetic dopant.Comment: 13 pages, 12 figures, 2 table

    Kardar-Parisi-Zhang universality in first-passage percolation: the role of geodesic degeneracy

    Get PDF
    We have characterized the scaling behavior of the first-passage percolation (FPP) model on two types of discrete networks, the regular square lattice and the disordered Delaunay lattice, thereby addressing the effect of the underlying topology. Several distribution functions for the link-times were considered. The asymptotic behavior of the fluctuations for both the minimal arrival time and the lateral deviation of the geodesic path are in perfect agreement with the Kardar-Parisi-Zhang (KPZ) universality class regardless of the type of the link-time distribution and of the lattice topology. Pre-asymptotic behavior, on the other hand, is found to depend on the uniqueness of geodesics in absence of disorder in the local crossing times, a topological property of lattice directions that we term geodesic degeneracy. This property has important consequences on the model, as for example the well-known anisotropic growth in regular lattices. In this work we provide a framework to understand its effect as well as to characterize its extent.We acknowledge fruitful conversations with E. Korutcheva. This work has been supported by MINECO/FEDER (Spain/EU) grants FIS2015-66020-C2-1-P and FIS2015-69167-C2-1-P

    Charge Dynamics in Cuprate Superconductors

    Full text link
    In this lecture we present some interesting issues that arise when the dynamics of the charge carriers in the CuO2_2 planes of the high temperature superconductors is considered. Based on the qualitative picture of doping, set by experiments and some previous calculations, we consider the strength of various inter and intra-cell charge transfer susceptibilities, the question of Coulomb screening and charge collective modes. The starting point is the usual p-d model extended by the long range Coulomb (LRC) interaction. Within this model it is possible to examine the case in which the LRC forces frustrate the electronic phase separation, the instability which is present in the model without an LRC interaction. While the static dielectric function in such systems is negative down to arbitrarily small wavevectors, the system is not unstable. We consider the dominant electronic charge susceptibilities and possible consequences for the lattice properties.Comment: 14 pages, 15 figures, latex, to be published in "From Quantum Mechanics to Technology", Lecture Notes in Physics, Springe
    corecore