34,929 research outputs found

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209

    Evaluation of IEEE 802.1 Time Sensitive Networking Performance for Microgrid and Smart Grid Power System Applications

    Get PDF
    Proliferation of distributed energy resources and the importance of smart energy management has led to increased interest in microgrids. A microgrid is an area of the grid that can be disconnected and operated independently from the main grid when required and can generate some or all of its own energy needs with distributed energy resources and battery storage. This allows for the microgrid area to continue operating even when the main grid is unavailable. In addition, often a microgrid can utilize waste heat from energy generation to drive thermal loads, further improving energy utilization. This leads to increased reliability and overall efficiency in the microgrid area.As microgrids (and by extension the smart grid) become more widespread, new methods of communication and control are required to aid in management of many different distributed entities. One such communication architecture that may prove useful is the set of IEEE 802.1 Time Sensitive Networking (TSN) standards. These standards specify improvements and new capabilities for LAN based communication networks that previously made them unsuitable for widespread deployment in a power system setting. These standards include specifications for low latency guarantees, clock synchronization, data frame redundancy, and centralized system administration. These capabilities were previously available on proprietary or application specific solutions. However, they will now be available as part of the Ethernet standard, enabling backwards compatibility with existing network architecture and support with future advances.Two of the featured standards, IEEE 802.1AS (governing time-synchronization) and IEEE 802.1Qbv (governing time aware traffic shaping), will be tested and evaluated for their potential utility in power systems and microgrid applications. These tests will measure the latency achievable using TSN over a network at various levels of congestion and compare these results with UDP and TCP protocols. In addition, the ability to use synchronized clocks to generate waveforms for microgrid inverter synchronization will be explored
    corecore