769 research outputs found

    On the Labeling Problem of Permutation Group Codes Under the Infinity Metric

    Full text link

    Systematic Codes for Rank Modulation

    Get PDF
    The goal of this paper is to construct systematic error-correcting codes for permutations and multi-permutations in the Kendall's Ï„\tau-metric. These codes are important in new applications such as rank modulation for flash memories. The construction is based on error-correcting codes for multi-permutations and a partition of the set of permutations into error-correcting codes. For a given large enough number of information symbols kk, and for any integer tt, we present a construction for (k+r,k){(k+r,k)} systematic tt-error-correcting codes, for permutations from Sk+rS_{k+r}, with less redundancy symbols than the number of redundancy symbols in the codes of the known constructions. In particular, for a given tt and for sufficiently large kk we can obtain r=t+1r=t+1. The same construction is also applied to obtain related systematic error-correcting codes for multi-permutations.Comment: to be presented ISIT201

    Systematic Error-Correcting Codes for Rank Modulation

    Get PDF
    The rank-modulation scheme has been recently proposed for efficiently storing data in nonvolatile memories. Error-correcting codes are essential for rank modulation, however, existing results have been limited. In this work we explore a new approach, \emph{systematic error-correcting codes for rank modulation}. Systematic codes have the benefits of enabling efficient information retrieval and potentially supporting more efficient encoding and decoding procedures. We study systematic codes for rank modulation under Kendall's τ\tau-metric as well as under the ℓ∞\ell_\infty-metric. In Kendall's τ\tau-metric we present [k+2,k,3][k+2,k,3]-systematic codes for correcting one error, which have optimal rates, unless systematic perfect codes exist. We also study the design of multi-error-correcting codes, and provide two explicit constructions, one resulting in [n+1,k+1,2t+2][n+1,k+1,2t+2] systematic codes with redundancy at most 2t+12t+1. We use non-constructive arguments to show the existence of [n,k,n−k][n,k,n-k]-systematic codes for general parameters. Furthermore, we prove that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes. Finally, in the ℓ∞\ell_\infty-metric we construct two [n,k,d][n,k,d] systematic multi-error-correcting codes, the first for the case of d=O(1)d=O(1), and the second for d=Θ(n)d=\Theta(n). In the latter case, the codes have the same asymptotic rate as the best codes currently known in this metric

    Limited-Magnitude Error-Correcting Gray Codes for Rank Modulation

    Full text link
    We construct Gray codes over permutations for the rank-modulation scheme, which are also capable of correcting errors under the infinity-metric. These errors model limited-magnitude or spike errors, for which only single-error-detecting Gray codes are currently known. Surprisingly, the error-correcting codes we construct achieve a better asymptotic rate than that of presently known constructions not having the Gray property, and exceed the Gilbert-Varshamov bound. Additionally, we present efficient ranking and unranking procedures, as well as a decoding procedure that runs in linear time. Finally, we also apply our methods to solve an outstanding issue with error-detecting rank-modulation Gray codes (snake-in-the-box codes) under a different metric, the Kendall Ï„\tau-metric, in the group of permutations over an even number of elements S2nS_{2n}, where we provide asymptotically optimal codes.Comment: Revised version for journal submission. Additional results include more tight auxiliary constructions, a decoding shcema, ranking/unranking procedures, and application to snake-in-the-box codes under the Kendall tau-metri

    Trees and the dynamics of polynomials

    Get PDF
    The basin of infinity of a polynomial map f : {\bf C} \arrow {\bf C} carries a natural foliation and a flat metric with singularities, making it into a metrized Riemann surface X(f)X(f). As ff diverges in the moduli space of polynomials, the surface X(f)X(f) collapses along its foliation to yield a metrized simplicial tree (T,η)(T,\eta), with limiting dynamics F : T \arrow T. In this paper we characterize the trees that arise as limits, and show they provide a natural boundary \PT_d compactifying the moduli space of polynomials of degree dd. We show that (T,η,F)(T,\eta,F) records the limiting behavior of multipliers at periodic points, and that any divergent meromorphic family of polynomials \{f_t(z) : t \mem \Delta^* \} can be completed by a unique tree at its central fiber. Finally we show that in the cubic case, the boundary of moduli space \PT_3 is itself a tree. The metrized trees (T,η,F)(T,\eta,F) provide a counterpart, in the setting of iterated rational maps, to the R{\bf R}-trees that arise as limits of hyperbolic manifolds.Comment: 60 page
    • …
    corecore