227 research outputs found

    Cross-Composition: A New Technique for Kernelization Lower Bounds

    Get PDF
    We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we show that if an NP-complete problem cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses. Our technique generalizes and strengthens the recent techniques of using OR-composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. We have similar lower bounds for Feedback Vertex Set.Comment: Updated information based on final version submitted to STACS 201

    Kernelization Lower Bounds By Cross-Composition

    Full text link
    We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L AND/OR-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical AND or OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by Dell and van Melkebeek (STOC 2010), we show that if an NP-hard problem OR-cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless NP \subseteq coNP/poly and the polynomial hierarchy collapses. Similarly, an AND-cross-composition for Q rules out polynomial kernels for Q under Bodlaender et al.'s AND-distillation conjecture. Our technique generalizes and strengthens the recent techniques of using composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. After learning of our results, several teams of authors have successfully applied the cross-composition framework to different parameterized problems. For completeness, our presentation of the framework includes several extensions based on this follow-up work. For example, we show how a relaxed version of OR-cross-compositions may be used to give lower bounds on the degree of the polynomial in the kernel size.Comment: A preliminary version appeared in the proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) under the title "Cross-Composition: A New Technique for Kernelization Lower Bounds". Several results have been strengthened compared to the preliminary version (http://arxiv.org/abs/1011.4224). 29 pages, 2 figure

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution

    Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?

    Full text link
    We prove a number of results around kernelization of problems parameterized by the size of a given vertex cover of the input graph. We provide three sets of simple general conditions characterizing problems admitting kernels of polynomial size. Our characterizations not only give generic explanations for the existence of many known polynomial kernels for problems like q-Coloring, Odd Cycle Transversal, Chordal Deletion, Eta Transversal, or Long Path, parameterized by the size of a vertex cover, but also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to delete at most k vertices to obtain a graph with no minor from a fixed finite set F. While our characterization captures many interesting problems, the kernelization complexity landscape of parameterizations by vertex cover is much more involved. We demonstrate this by several results about induced subgraph and minor containment testing, which we find surprising. While it was known that testing for an induced complete subgraph has no polynomial kernel unless NP is in coNP/poly, we show that the problem of testing if a graph contains a complete graph on t vertices as a minor admits a polynomial kernel. On the other hand, it was known that testing for a path on t vertices as a minor admits a polynomial kernel, but we show that testing for containment of an induced path on t vertices is unlikely to admit a polynomial kernel.Comment: To appear in the Journal of Computer and System Science

    Simultaneous Feedback Vertex Set: A Parameterized Perspective

    Get PDF
    Given a family of graphs F\mathcal{F}, a graph GG, and a positive integer kk, the F\mathcal{F}-Deletion problem asks whether we can delete at most kk vertices from GG to obtain a graph in F\mathcal{F}. F\mathcal{F}-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G=(V,i=1αEi)G = (V, \cup_{i=1}^{\alpha} E_{i}), where the edge set of GG is partitioned into α\alpha color classes, is called an α\alpha-edge-colored graph. A natural extension of the F\mathcal{F}-Deletion problem to edge-colored graphs is the α\alpha-Simultaneous F\mathcal{F}-Deletion problem. In the latter problem, we are given an α\alpha-edge-colored graph GG and the goal is to find a set SS of at most kk vertices such that each graph GiSG_i \setminus S, where Gi=(V,Ei)G_i = (V, E_i) and 1iα1 \leq i \leq \alpha, is in F\mathcal{F}. In this work, we study α\alpha-Simultaneous F\mathcal{F}-Deletion for F\mathcal{F} being the family of forests. In other words, we focus on the α\alpha-Simultaneous Feedback Vertex Set (α\alpha-SimFVS) problem. Algorithmically, we show that, like its classical counterpart, α\alpha-SimFVS parameterized by kk is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant α\alpha. In particular, we give an algorithm running in 2O(αk)nO(1)2^{O(\alpha k)}n^{O(1)} time and a kernel with O(αk3(α+1))O(\alpha k^{3(\alpha + 1)}) vertices. The running time of our algorithm implies that α\alpha-SimFVS is FPT even when αo(logn)\alpha \in o(\log n). We complement this positive result by showing that for αO(logn)\alpha \in O(\log n), where nn is the number of vertices in the input graph, α\alpha-SimFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014)

    Kernels for Structural Parameterizations of Vertex Cover - Case of Small Degree Modulators

    Get PDF
    Vertex Cover is one of the most well studied problems in the realm of parameterized algorithms and admits a kernel with O(l^2) edges and 2*l vertices. Here, l denotes the size of a vertex cover we are seeking for. A natural question is whether Vertex Cover admits a polynomial kernel (or a parameterized algorithm) with respect to a parameter k, that is, provably smaller than the size of the vertex cover. Jansen and Bodlaender [STACS 2011, TOCS 2013] raised this question and gave a kernel for Vertex Cover of size O(f^3), where f is the size of a feedback vertex set of the input graph. We continue this line of work and study Vertex Cover with respect to a parameter that is always smaller than the solution size and incomparable to the size of the feedback vertex set of the input graph. Our parameter is the number of vertices whose removal results in a graph of maximum degree two. While vertex cover with this parameterization can easily be shown to be fixed-parameter tractable (FPT), we show that it has a polynomial sized kernel. The input to our problem consists of an undirected graph G, S subseteq V(G) such that |S| = k and G[V(G)S] has maximum degree at most 2 and a positive integer l. Given (G,S,l), in polynomial time we output an instance (G\u27,S\u27,l\u27) such that |V(G\u27)|<= O(k^5), |E(G\u27)|<= O(k^6) and G has a vertex cover of size at most l if and only if G\u27 has a vertex cover of size at most l\u27. When G[V(G)S] has maximum degree at most 1, we improve the known kernel bound from O(k^3) vertices to O(k^2) vertices (and O(k^3) edges). In general, if G[V(G)S] is simply a collection of cliques of size at most d, then we transform the graph in polynomial time to an equivalent hypergraph with O(k^d) vertices and show that, for d >= 3, a kernel with O(k^{d-epsilon}) vertices is unlikely to exist for any epsilon >0 unless NP is a subset of coNO/poly

    Bridge-Depth Characterizes Which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel

    Get PDF
    We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance (G,k) of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a pre-determined complexity parameter of G. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce G to a member of a simple graph class ?, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes ? for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to ?, admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families ? for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if ? has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number

    Search-Space Reduction via Essential Vertices

    Get PDF
    We investigate preprocessing for vertex-subset problems on graphs. While the notion of kernelization, originating in parameterized complexity theory, is a formalization of provably effective preprocessing aimed at reducing the total instance size, our focus is on finding a non-empty vertex set that belongs to an optimal solution. This decreases the size of the remaining part of the solution which still has to be found, and therefore shrinks the search space of fixed-parameter tractable algorithms for parameterizations based on the solution size. We introduce the notion of a c-essential vertex as one that is contained in all c-approximate solutions. For several classic combinatorial problems such as Odd Cycle Transversal and Directed Feedback Vertex Set, we show that under mild conditions a polynomial-time preprocessing algorithm can find a subset of an optimal solution that contains all 2-essential vertices, by exploiting packing/covering duality. This leads to FPT algorithms to solve these problems where the exponential term in the running time depends only on the number of non-essential vertices in the solution
    corecore