28,113 research outputs found

    A Theoretical Analysis of Deep Neural Networks for Texture Classification

    Full text link
    We investigate the use of Deep Neural Networks for the classification of image datasets where texture features are important for generating class-conditional discriminative representations. To this end, we first derive the size of the feature space for some standard textural features extracted from the input dataset and then use the theory of Vapnik-Chervonenkis dimension to show that hand-crafted feature extraction creates low-dimensional representations which help in reducing the overall excess error rate. As a corollary to this analysis, we derive for the first time upper bounds on the VC dimension of Convolutional Neural Network as well as Dropout and Dropconnect networks and the relation between excess error rate of Dropout and Dropconnect networks. The concept of intrinsic dimension is used to validate the intuition that texture-based datasets are inherently higher dimensional as compared to handwritten digits or other object recognition datasets and hence more difficult to be shattered by neural networks. We then derive the mean distance from the centroid to the nearest and farthest sampling points in an n-dimensional manifold and show that the Relative Contrast of the sample data vanishes as dimensionality of the underlying vector space tends to infinity.Comment: Accepted in International Joint Conference on Neural Networks, IJCNN 201

    Global and Feature Based Gender Classification of Faces: A Comparison of Human Performance and Computational Models

    Get PDF
    Original paper can be found at: http://eproceedings.worldscinet.com/9789812701886/9789812701886_0036.html Copyright World Scientific Publishing Company. http://dx.doi.org/10.1142/9789812701886_0036Most computational models for gender classification use global information (the full face image) giving equal weight to the whole face area irrespective of the importance of the internal features. Here, we use a global and feature based representation of face images that includes both global and featural information. We use dimensionality reduction techniques and a support vector machine classifier and show that this method performs better than either global or feature based representations alone.Peer reviewe
    • …
    corecore