105 research outputs found

    IMPLEMENTATION OF CHORDAL RING NETWORK TOPOLOGY TO ENHANCE THE PERFORMANCE OF WIRELESS BROADBAND NETWORK

    Get PDF
    The expansion of networks involved higher jump on the users utilizing the networks resources, which may require extra higher bandwidth. Due to the development of technology especially those folded under the Internet of Things (IoT), the new demand of higher data rate is been witnesses among the users. In order to feed the demand of users with high data rate, broadband networks are required where high data rate can be ensured for each user. Broadband networks can be established using optical network that carries the data through wide broadband. Areas such as rural and forests sides which are witnessing plenty of natural obstacles such as mountains, trees, seas, etc. are forming big challenge for propagating a cable (wire) or optical network. Due to the limitations of the wire network, World Interoperability for Microwave Access (WiMAX) technology has been introduced as substitution for the broadband network. Such kind of alternative can be deployed through any geographical area without concerning on the wire paths. WiMAX preserved large coverage area and hence it may not suffer from the signal hand-off as in the case of another wireless network. In this project, Chordal Ring network topology is implemented to enhance the performance of wireless broadband network. With different routing protocols such as Destination Sequenced Distance Vector Protocol (DSDV) and Ad hoc On Demand Distance Vector (AODV), the network performance was examined for various Chordal Ring degree (e.g. fourth degree and fifth degree). Performance metrics such as number of transmitted packets, number of received packers, delivered packet rate (PDR), total number of drop packers (DP) and average queuing delay (been measured). Finally, the obtained results had been shown that fifth-degree Chordal Ring network is outperforming through DSDV routing protoco

    Resource Allocation in Communication and Social Networks

    Get PDF
    abstract: As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.Dissertation/ThesisPh.D. Computer Science 201
    • …
    corecore