80 research outputs found

    On the Relative Expressiveness of Argumentation Frameworks, Normal Logic Programs and Abstract Dialectical Frameworks

    Full text link
    We analyse the expressiveness of the two-valued semantics of abstract argumentation frameworks, normal logic programs and abstract dialectical frameworks. By expressiveness we mean the ability to encode a desired set of two-valued interpretations over a given propositional signature using only atoms from that signature. While the computational complexity of the two-valued model existence problem for all these languages is (almost) the same, we show that the languages form a neat hierarchy with respect to their expressiveness.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Compact Argumentation Frameworks

    Full text link
    Abstract argumentation frameworks (AFs) are one of the most studied formalisms in AI. In this work, we introduce a certain subclass of AFs which we call compact. Given an extension-based semantics, the corresponding compact AFs are characterized by the feature that each argument of the AF occurs in at least one extension. This not only guarantees a certain notion of fairness; compact AFs are thus also minimal in the sense that no argument can be removed without changing the outcome. We address the following questions in the paper: (1) How are the classes of compact AFs related for different semantics? (2) Under which circumstances can AFs be transformed into equivalent compact ones? (3) Finally, we show that compact AFs are indeed a non-trivial subclass, since the verification problem remains coNP-hard for certain semantics.Comment: Contribution to the 15th International Workshop on Non-Monotonic Reasoning, 2014, Vienn

    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

    Full text link
    We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given. - The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set). - The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument. - The Center problem asks whether, given two extensions of distance k, whether there is a "center" extension that is a distance at most (k-1) from both given extensions. We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results covers several different semantics, including admissible, complete, preferred, semi-stable and stable semantics

    On the Existence of Characterization Logics and Fundamental Properties of Argumentation Semantics

    Get PDF
    Given the large variety of existing logical formalisms it is of utmost importance to select the most adequate one for a specific purpose, e.g. for representing the knowledge relevant for a particular application or for using the formalism as a modeling tool for problem solving. Awareness of the nature of a logical formalism, in other words, of its fundamental intrinsic properties, is indispensable and provides the basis of an informed choice. One such intrinsic property of logic-based knowledge representation languages is the context-dependency of pieces of knowledge. In classical propositional logic, for example, there is no such context-dependence: whenever two sets of formulas are equivalent in the sense of having the same models (ordinary equivalence), then they are mutually replaceable in arbitrary contexts (strong equivalence). However, a large number of commonly used formalisms are not like classical logic which leads to a series of interesting developments. It turned out that sometimes, to characterize strong equivalence in formalism L, we can use ordinary equivalence in formalism L0: for example, strong equivalence in normal logic programs under stable models can be characterized by the standard semantics of the logic of here-and-there. Such results about the existence of characterizing logics has rightly been recognized as important for the study of concrete knowledge representation formalisms and raise a fundamental question: Does every formalism have one? In this thesis, we answer this question with a qualified “yes”. More precisely, we show that the important case of considering only finite knowledge bases guarantees the existence of a canonical characterizing formalism. Furthermore, we argue that those characterizing formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory. The other main part of this thesis is devoted to argumentation semantics which play the flagship role in Dung’s abstract argumentation theory. Almost all of them are motivated by an easily understandable intuition of what should be acceptable in the light of conflicts. However, although these intuitions equip us with short and comprehensible formal definitions it turned out that their intrinsic properties such as existence and uniqueness, expressibility, replaceability and verifiability are not that easily accessible. We review the mentioned properties for almost all semantics available in the literature. In doing so we include two main axes: namely first, the distinction between extension-based and labelling-based versions and secondly, the distinction of different kind of argumentation frameworks such as finite or unrestricted ones

    A principled approach to the implementation of argumentation models

    Get PDF
    Argumentation theory combines philosophical concepts and computational models to deliver a practical approach to reasoning that handles uncertain information and possibly conflicting viewpoints. This paper focuses on the structured approach to argumentation that incorporates domain specific knowledge and argumentation schemes. There is a lack of implementations and implementation methods for most structured models. This paper shows how taking a principled approach, using the programming language Haskell, helps addressing this problem. We construct a framework for developing structured argumentation models and translations between models (given intertranslatability of models). We furthermore provide a methodology to quickly test and formally prove desirable properties of such implementations using a theorem prover. We demonstrate our approach on the Carneades argumentation model and Dung's abstract argumentation frameworks, implementing both the models and a translation from Carneades into AFs. We then provide implementations of correspondence properties and an initial formalisation of Dung's AFs into a theorem prover. The final result is a verified pipeline from the structured model Carneades into existing efficient SAT-based implementations of Dung's AFs

    Interpretations of support among arguments

    Get PDF
    The theory of formal argumentation distinguishes and unifies various notions of attack, support and preference among arguments, and principles are used to classify the semantics of various kinds of argumentation frameworks. In this paper, we consider the case in which we know that an argument is supporting another one, but we do not know yet which kind of support it is. Most common in the literature is to classify support as deductive, necessary, or evidentiary. Alternatively, support is characterized using principles. We discuss the interpretation of support using a legal divorce action. Technical results and proofs can be found in an accompanying technical report

    A pilot study in using argumentation frameworks for online debates

    Get PDF
    We describe a pilot study in using argumentation frameworks obtained from an online debate to evaluate positions expressed in the debate. This pilot study aims at exploring the richness of Computational Argumentation methods and techniques for evaluating arguments to reason with the output of Argument Mining. It uses a hand-generated graphical representation of the debate as an intermediate representation from which argumentation frameworks can be extracted, but richer than any existing argumentation framework. The intermediate representation can provide insights for benchmark sets derived from online debates
    • …
    corecore