17,379 research outputs found

    Soft Concurrent Constraint Programming

    Full text link
    Soft constraints extend classical constraints to represent multiple consistency levels, and thus provide a way to express preferences, fuzziness, and uncertainty. While there are many soft constraint solving formalisms, even distributed ones, by now there seems to be no concurrent programming framework where soft constraints can be handled. In this paper we show how the classical concurrent constraint (cc) programming framework can work with soft constraints, and we also propose an extension of cc languages which can use soft constraints to prune and direct the search for a solution. We believe that this new programming paradigm, called soft cc (scc), can be also very useful in many web-related scenarios. In fact, the language level allows web agents to express their interaction and negotiation protocols, and also to post their requests in terms of preferences, and the underlying soft constraint solver can find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on Computational Logic (TOCL), zipped file

    A functional quantum programming language

    Full text link
    We introduce the language QML, a functional language for quantum computations on finite types. Its design is guided by its categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive semantics of irreversible quantum computations realisable as quantum gates. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings explicit. Strict programs are free from decoherence and hence preserve superpositions and entanglement - which is essential for quantum parallelism.Comment: 15 pages. Final version, to appear in Logic in Computer Science 200
    • …
    corecore