9,540 research outputs found

    Spiers Memorial Lecture: Interplay of theory and computation in chemistry—examples from on-water organic catalysis, enzyme catalysis, and single-molecule fluctuations

    Get PDF
    In this lecture, several examples are considered that illustrate the interplay of experiment, theory, and computations. The examples include on-water catalysis of organic reactions, enzymatic catalysis, single molecule fluctuations, and some much earlier work on electron transfer and atom or group transfer reactions. Computations have made a major impact on our understanding and in the comparisons with experiments. There are also major advantages of analytical theories that may capture in a single equation an entire field and relate experiments of one type to those of another. Such a theory has a generic quality. These topics are explored in the present lecture

    Mind the social feedback : effects of tDCS applied to the left DLPFC on psychophysiological responses during the anticipation and reception of social evaluations

    Get PDF
    The left dorsolateral prefrontal cortex (lDLPFC) is implicated in anticipatory (i.e. during anticipation of emotional stimuli) and online (i.e. during confrontation with emotional stimuli) emotion regulatory processes. However, research that investigates the causal role of the lDLPFC in these processes is lacking. In this study, 74 participants received active or sham transcranial direct current stimulation (tDCS) over the lDLPFC. Participants were told strangers evaluated them. These (rigged) social evaluations were presented, and in 50% of the trials, participants could anticipate the valence (positive or negative) of the upcoming social feedback. Pupil dilation (a marker of cognitive resource allocation) and skin conductance responses (a marker of arousal) were measured. The results indicate that active (compared to sham) tDCS reduced arousal during the confrontation with anticipated feedback but only marginally during the confrontation with unanticipated feedback. When participants were given the opportunity to anticipate the social feedback, tDCS reduced arousal, irrespective of whether one was anticipating or being confronted with the anticipated feedback. Moreover, tDCS reduced cognitive resource allocation during anticipation, which was associated with resource allocation increases during the subsequent confrontation. Altogether, results suggest that the lDLPFC is causally implicated in the interplay between anticipatory and online emotion regulatory processes

    Halogenation effects in Intramolecular Furan Diels-Alder reactions:broad scope synthetic and computational studies

    Get PDF
    For the first time a comprehensive synthetic and computational study of the effect of halogen substitution on both furan and dienophile for the intramolecular Furan Diels-Alder (IMDAF) reaction has been undertaken. Contrary to our initial expectations, halogen substitution on the dienophile was found to have a significant effect, making the reactions slower and less thermodynamically favourable. However, careful choice of the site of furan halogenation could be used to overcome dienophile halogen substitution, leading to highly functionalised cycloadducts. These reactions are thought to be controlled by the interplay of three factors: positive charge stabilisation in the transition state and product, steric effects and a dipolar interaction term identified by high level calculations. Frontier orbital effects do not appear to make a major contribution in determining the viability of these reactions, which is consistent with our analysis of calculated transition state structural data

    Understanding thio-effects in simple phosphoryl systems : role of solvent effects and nucleophile charge.

    Get PDF
    Recent experimental work (J. Org. Chem., 2012, 77, 5829) demonstrated pronounced differences in measured thio-effects for the hydrolysis of (thio)phosphodichloridates by water and hydroxide nucleophiles. In the present work, we have performed detailed quantum chemical calculations of these reactions, with the aim of rationalizing the molecular bases for this discrimination. The calculations highlight the interplay between nucleophile charge and transition state solvation in SN2(P) mechanisms as the basis of these differences, rather than a change in mechanism

    Understanding the structure and reactivity of NiCu nanoparticles: An atomistic model

    Get PDF
    The structure of bimetallic NiCu nanoparticles (NP) is investigated as a function of their composition and size by means of Lattice MonteCarlo (LMC) and molecular dynamics (MD) simulations. According to our results, copper segregation takes place at any composition of the particles. We found that this feature is not size-dependent. In contrast, nickel segregation depends on the NP size. When the size increases, Ni atoms tend to remain in the vicinity of the surface and deeper. For smaller NPs, Ni atoms are located at the surface as well. Our results also showed that most of the metal atoms segregated at the surface area were found to decorate edges and/or form islands. Our findings agree qualitatively with the experimental data found in the literature. In addition, we comment on the reactivity of these nanoparticles.Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de QuĂ­mica Aplicada del Litoral. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de QuĂ­mica Aplicada del Litoral.; Argentina. Universidad Nacional del Litoral. Facultad de IngenierĂ­a QuĂ­mica. Programa de ElectroquĂ­mica Aplicada e IngenierĂ­a ElectroquĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Belletti, Gustavo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional del Litoral. Instituto de QuĂ­mica Aplicada del Litoral. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de QuĂ­mica Aplicada del Litoral.; Argentina. Universidad Nacional del Litoral. Facultad de IngenierĂ­a QuĂ­mica. Programa de ElectroquĂ­mica Aplicada e IngenierĂ­a ElectroquĂ­mica; ArgentinaFil: Shermukhamedov, S. A.. Kazan National Research Technological University; RusiaFil: Glukhov, D. V.. Kazan National Research Technological University; RusiaFil: Santos, Elizabeth del Carmen. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; Argentina. Institute of Theoretical Chemistry; Alemania. Universitat Ulm; AlemaniaFil: Schmickler, Wolfgang. Universitat Ulm; Alemania. Institute of Theoretical Chemistry; AlemaniaFil: Nazmutdinov, Renat. Kazan National Research Technological University; Rusi
    • 

    corecore