7,134 research outputs found

    Electric Vehicles Charging Control based on Future Internet Generic Enablers

    Full text link
    In this paper a rationale for the deployment of Future Internet based applications in the field of Electric Vehicles (EVs) smart charging is presented. The focus is on the Connected Device Interface (CDI) Generic Enabler (GE) and the Network Information and Controller (NetIC) GE, which are recognized to have a potential impact on the charging control problem and the configuration of communications networks within reconfigurable clusters of charging points. The CDI GE can be used for capturing the driver feedback in terms of Quality of Experience (QoE) in those situations where the charging power is abruptly limited as a consequence of short term grid needs, like the shedding action asked by the Transmission System Operator to the Distribution System Operator aimed at clearing networks contingencies due to the loss of a transmission line or large wind power fluctuations. The NetIC GE can be used when a master Electric Vehicle Supply Equipment (EVSE) hosts the Load Area Controller, responsible for managing simultaneous charging sessions within a given Load Area (LA); the reconfiguration of distribution grid topology results in shift of EVSEs among LAs, then reallocation of slave EVSEs is needed. Involved actors, equipment, communications and processes are identified through the standardized framework provided by the Smart Grid Architecture Model (SGAM).Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    GreenCrowd: Toward a Holistic Algorithmic Crowd Charging Framework

    Get PDF
    Crowd charging represents an alternative peer-to-peer energy replenishment option for mobile users to align with the circular economy paradigm. Following this option, users bound by finite resource capacity utilize the energy from external to the crowd wireless or wired energy sources (such as shared chargers), and internal to the crowd energy sources (such as mobile devices, via wireless power transfer). If designed carefully, such utilization can boost the energy availability of users and provide energy ubiquitously to their devices for making them functional for longer. This article proposes the GreenCrowd framework, introducing a privacy-by-design in the digital domain crowd charging process, the architecture of which incorporates multiple crowd-* components, such as online social information exploitation, algorithmic battery aging mitigation, user reward mechanisms, and advanced decision making. The primary aim of article is to present the technological and applicative requirements and constraints of GreenCrowd, and provide practical evidence on its feasibility

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore