51 research outputs found

    LP-Based Approximation Algorithms for Facility Location in Buy-at-Bulk Network Design

    Full text link
    Abstract We study problems that integrate buy-at-bulk network design into the classical (connected) facility location problem. In such problems, we need to open facilities, build a routing network, and route every client demand to an open facility. Furthermore, capacities of the edges can be purchased in discrete units from K different cable types with costs that satisfy economies of scale. We extend the linear programming frame-work of Talwar [IPCO 2002] for the single-source buy-at-bulk problem to these variants and prove integrality gap upper bounds for both facility location and connected facility location buy-at-bulk problems. For the unconnected variant we prove an integrality gap bound of O(K), and for the connected version, we get an improved bound of O(1).

    Exact approaches for designing multifacility buy-at-bulk networks

    Get PDF
    We study a problem that integrates buy-at-bulk network design into the classical facility location problem. We consider a generalization of the facility location problem where multiple clients may share a capacitated network to connect to open facilities instead of requiring direct links. In this problem, we wish to open facilities, build a routing network by installing access cables of different costs and capacities, and route every client demand to an open facility. We provide a path based formulation and we compare it with the natural compact formulation for this problem. We then design an exact branch-price-and-cut algorithm for solving the path based formulation. We study the effect of two families of valid inequalities. In addition to this, we present three different types of primal heuristics and employ a hybrid approach to effectively combine these heuristics in order to improve the primal bounds. We finally report the results of our approach that were tested on a set of real world instances as well as two sets of benchmark instances and evaluate the effects of our valid inequalities and primal heuristics

    Steiner Tree Approximation via Iterative Randomized Rounding

    Get PDF
    The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55 [Robins,Zelikovsky-'05]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2 [Vazirani,Rajagopalan-'99]. In this paper we present an LP-based approximation algorithm for Steiner tree with an improved approximation factor. Our algorithm is based on a, seemingly novel, \emph{iterative randomized rounding} technique. We consider an LP relaxation of the problem, which is based on the notion of directed components. We sample one component with probability proportional to the value of the associated variable in a fractional solution: the sampled component is contracted and the LP is updated consequently. We iterate this process until all terminals are connected. Our algorithm delivers a solution of cost at most ln(4)+\eps<1.39 times the cost of an optimal Steiner tree. The algorithm can be derandomized using the method of limited independence. As a byproduct of our analysis, we show that the integrality gap of our LP is at most 1.55, hence answering to the mentioned open question. This might have consequences for a number of related problems

    LDRD final report : combinatorial optimization with demands.

    Full text link

    From Uncertainty to Nonlinearity: Solving Virtual Private Network via Single-Sink Buy-at-Bulk

    Full text link

    Online Directed Spanners and Steiner Forests

    Get PDF
    We present online algorithms for directed spanners and Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized O~(n4/5)\tilde{O}(n^{4/5})-competitive algorithm for graphs with general lengths, where nn is the number of vertices. With uniform lengths, we give an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3+\epsilon})-competitive algorithm, and an efficient deterministic O~(k1/2+ϵ)\tilde{O}(k^{1/2+\epsilon})-competitive algorithm, where kk is the number of terminal pairs. These are the first online algorithms for directed spanners. In the offline setting, the current best approximation ratio with uniform lengths is O~(n3/5+ϵ)\tilde{O}(n^{3/5 + \epsilon}), due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3 + \epsilon})-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is O~(k1/2+ϵ)\tilde{O}(k^{1/2 + \epsilon})-competitive. In the offline version, the current best approximation ratio with uniform costs is O~(n26/45+ϵ)\tilde{O}(n^{26/45 + \epsilon}), due to Abboud and Bodwin (SODA 2018). A small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion
    corecore