1,467 research outputs found

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Design and validation of a platform for electromagnetic fault injection

    Get PDF
    Security is acknowledged as one of the main challenges in the design and deployment of embedded circuits. Devices need to operate on-the-field safely and correctly, even when at physical reach of potential adversaries. One of the most powerful techniques to compromise the correct functioning of a device are fault injection attacks. They enable an active adversary to trigger errors on a circuit in order to bypass security features or to gain knowledge of security-sensitive information. There are several methods to induce such errors. In this work we focus on the injection of faults through the electromagnetic (EM) channel. In particular, we document our efforts towards building a suitable platform for EM pulse injection. We design a pulse injection circuit that can provide currents over 20 A to an EM injector in order to generate abrupt variations of the EM field on the vicinity of a circuit. We validate the suitability of our platform by applying a well-know attack on an embedded 8-bit microcontroller implementing the AES block cipher. In particular, we show how to extract the AES secret cryptographic keys stored in the device by careful injection of faults during the encryption operations and simple analysis of the erroneous outputs.Peer ReviewedPostprint (published version

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    Experimental evaluation of two software countermeasures against fault attacks

    Get PDF
    Injection of transient faults can be used as a way to attack embedded systems. On embedded processors such as microcontrollers, several studies showed that such a transient fault injection with glitches or electromagnetic pulses could corrupt either the data loads from the memory or the assembly instructions executed by the circuit. Some countermeasure schemes which rely on temporal redundancy have been proposed to handle this issue. Among them, several schemes add this redundancy at assembly instruction level. In this paper, we perform a practical evaluation for two of those countermeasure schemes by using a pulsed electromagnetic fault injection process on a 32-bit microcontroller. We provide some necessary conditions for an efficient implementation of those countermeasure schemes in practice. We also evaluate their efficiency and highlight their limitations. To the best of our knowledge, no experimental evaluation of the security of such instruction-level countermeasure schemes has been published yet.Comment: 6 pages, 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Arlington : United States (2014

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research

    Generalized Paxos Made Byzantine (and Less Complex)

    Full text link
    One of the most recent members of the Paxos family of protocols is Generalized Paxos. This variant of Paxos has the characteristic that it departs from the original specification of consensus, allowing for a weaker safety condition where different processes can have a different views on a sequence being agreed upon. However, much like the original Paxos counterpart, Generalized Paxos does not have a simple implementation. Furthermore, with the recent practical adoption of Byzantine fault tolerant protocols, it is timely and important to understand how Generalized Paxos can be implemented in the Byzantine model. In this paper, we make two main contributions. First, we provide a description of Generalized Paxos that is easier to understand, based on a simpler specification and the pseudocode for a solution that can be readily implemented. Second, we extend the protocol to the Byzantine fault model
    corecore