53 research outputs found

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    The design of a 250MHz CMOS bandpass sigma-delta A/D modulator with continuous-time circuitry

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Low Power Analog to Digital Converters in Advanced CMOS Technology Nodes

    Get PDF
    The dissertation presents system and circuit solutions to improve the power efficiency and address high-speed design issues of ADCs in advanced CMOS technologies. For image sensor applications, a high-performance digitizer prototype based on column-parallel single-slope ADC (SS-ADC) topology for readout of a back-illuminated 3D-stacked CMOS image sensor is presented. To address the high power consumption issue in high-speed digital counters, a passing window (PW) based hybrid counter topology is proposed. To address the high column FPN under bright illumination conditions, a double auto-zeroing (AZ) scheme is proposed. The proposed techniques are experimentally verified in a prototype chip designed and fabricated in the TSMC 40 nm low-power CMOS process. The PW technique saves 52.8% of power consumption in the hybrid digital counters. Dark/bright column fixed pattern noise (FPN) of 0.0024%/0.028% is achieved employing the proposed double AZ technique for digital correlated double sampling (CDS). A single-column digitizer consumes total power of 66.8μW and occupies an area of 5.4 µm x 610 µm. For mobile/wireless receiver applications, this dissertation presents a low-power wide-bandwidth multistage noise-shaping (MASH) continuous-time delta-sigma modulator (CT-ΔΣM) employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The proposed MASH 1-1-1 topology is a cascade of three single-loop first-order CT-ΔΣM stages, each of which consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulator’s jitter sensitivity performance. FIR’s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing comparator outputs is proposed; this approach is suitable for highspeed operation together with power and area benefits. Fabricated in a 40-nm low-power CMOS technology, the modulator’s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR), 68 dB of signal-to-noise ratio (SNR), and 68.2 dB of dynamic range (DR) within 50.5 MHz of bandwidth (BW), while consuming 19 mW of total power (P). The proposed modulator features 161.5 dB of figure-of-merit (FOM), defined as FOM = SNDR + 10 log10 (BW/P)

    A SigmaDelta modulator for digital hearing instruments using 0.18 mum CMOS technology.

    Get PDF
    This thesis develops the design methodology for a low-voltage low-power SigmaDelta Modulator, realized using a switched op-amp technique that can be used in a hearing instrument. Switched op-amp implementation allows scaling down the design to the latest CMOS technology. A single-loop second-order SigmaDelta Modulator topology is chosen. The modulator circuit features reduced complexity, area reduction and low conversion energy. The modulator has a sampling rate of 8.2 MHz with an over-sampling ratio (OSR) of 256 to provide an audio bandwidth of 16 kHz. The modulator is implemented in a 0.18 mum digital CMOS technology with metal-to-metal sandwich structure capacitors. The modulator operates with a supply voltage of 1.8 V. The active area is 0.403 mm2. The modulator achieves a 98 dB signal-to-noise-and-distortion ratio (SNDR) and a 100 dB dynamic range (DR) at a Nyquist conversion rate of 32 kHz and consumes 1321 muW with a joule/conversion figure of merit equal to 161 x 10-12 J/s. The design methodology is developed through the extensive use of simulation tools. The behaviour simulation is carried out using Matlab/SIMULINK while circuits are simulated with Hspice using the Cadence design tools. Full-custom layout for the analog and the digital circuits is performed using the Cadence design tool. Post-processing simulation of the extracted modulator with parasitic verifies that results meet the requirements. The design has been sent to CMC for fabrication. Source: Masters Abstracts International, Volume: 43-03, page: 0947. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Design and VLSI implementation of a decimation filter for hearing Aid applications

    Get PDF
    Approximately 10% of the world’s population suffers from some type of hearing loss, yet only small percentage of this statistic use the hearing aid. The stigma associated with wearing a hearing aid, customer dissatisfaction with hearing aid performance, the cost and the battery life. Through the use of digital signal processing the digital hearing aid now offers what the analog hearing aid cannot offer. Currently lot of attention is being given to low power VLSI design. More and more people around the world suffer from hearing losses. The increasing average age and the growing population are the main reasons for this. The decimation filter used for hearing aid applications is designed and implemented both in MATLAB and VHDL. The decimation filter is designed using the distributed arithmetic multiplier in VHDL. Each digital filter structure is simulated using Matlab and its complete architecture is captured using Simulink. The resulting architecture is hardware efficient and consumes less power compared to conventional decimation filters. Compared to the comb-FIR-FIR architecture, the designed decimation filter architecture using Comb-half band FIR-FIR contributes to a hardware saving and reduces the power dissipation

    High-Speed Delta-Sigma Data Converters for Next-Generation Wireless Communication

    Get PDF
    In recent years, Continuous-time Delta-Sigma(CT-ΔΣ) analog-to-digital converters (ADCs) have been extensively investigated for their use in wireless receivers to achieve conversion bandwidths greater than 15 MHz and higher resolution of 10 to 14 bits. This dissertation investigates the current state-of-the-art high-speed single-bit and multi-bit Continuous-time Delta-Sigma modulator (CT-ΔΣM) designs and their limitations due to circuit non-idealities in achieving the performance required for next-generation wireless standards. Also, we presented complete architectural and circuit details of a high-speed single-bit and multi-bit CT-ΔΣM operating at a sampling rate of 1.25 GSps and 640 MSps respectively (the highest reported sampling rate in a 0.13 μm CMOS technology node) with measurement results. Further, we propose novel hybrid ΔΣ architecture with two-step quantizer to alleviate the bandwidth and resolution bottlenecks associated with the contemporary CT-ΔΣM topologies. To facilitate the design with the proposed architecture, a robust systematic design method is introduced to determine the loop-filter coefficients by taking into account the non-ideal integrator response, such as the finite opamp gain and the presence of multiple parasitic poles and zeros. Further, comprehensive system-level simulation is presented to analyze the effect of two-step quantizer non-idealities such as the offset and gain error in the sub-ADCs, and the current mismatch between the MSB and LSB elements in the feedback DAC. The proposed novel architecture is demonstrated by designing a high-speed wideband 4th order CT-ΔΣ modulator prototype, employing a two-step quantizer with 5-bits resolution. The proposed modulator takes advantage of the combination of a high-resolution two-step quantization technique and an excess-loop delay (ELD) compensation of more than one clock cycle to achieve lower-power consumption (28 mW), higher dynamic range (\u3e69 dB) with a wide conversion bandwidth (20 MHz), even at a lower sampling rate of 400 MHz. The proposed modulator achieves a Figure of Merit (FoM) of 340 fJ/level

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF
    corecore