606 research outputs found

    On the Impact of User Movement Simulations in the Evaluation of LBS Privacy- Preserving Techniques

    Get PDF
    The evaluation of privacy-preserving techniques for LBS is often based on simulations of mostly random user movements that only partially capture real deployment scenarios. We claim that benchmarks tailored to specific scenarios are needed, and we report preliminary results on how they may be generated through an agent-based context- aware simulator. We consider privacy preserving algorithms based on spatial cloaking and compare the experimental results obtained on two benchmarks: the first based on mostly random movements, and the second obtained from the context-aware simulator. The specific deployment scenario is the provisioning of a friend-finder-like service on weekend nights in a big city. Our results show that, compared to the context- aware simulator, the random user movement simulator leads to significantly different results for a spatial-cloaking algorithm, under-protecting in some cases, and over-protecting in others

    Efficient location privacy-aware forwarding in opportunistic mobile networks

    Get PDF
    This paper proposes a novel fully distributed and collaborative k-anonymity protocol (LPAF) to protect users’ location information and ensure better privacy while forwarding queries/replies to/from untrusted location-based service (LBS) over opportunistic mobile networks (OppMNets. We utilize a lightweight multihop Markov-based stochastic model for location prediction to guide queries toward the LBS’s location and to reduce required resources in terms of retransmission overheads. We develop a formal analytical model and present theoretical analysis and simulation of the proposed protocol performance. We further validate our results by performing extensive simulation experiments over a pseudo realistic city map using map-based mobility models and using real-world data trace to compare LPAF to existing location privacy and benchmark protocols. We show that LPAF manages to keep higher privacy levels in terms of k-anonymity and quality of service in terms of success ratio and delay, as compared with other protocols, while maintaining lower overheads. Simulation results show that LPAF achieves up to an 11% improvement in success ratio for pseudorealistic scenarios, whereas real-world data trace experiments show up to a 24% improvement with a slight increase in the average delay

    PRIVACY PRESERVATION IN LOCATION-BASED PROXIMITY SERVICES

    Get PDF
    One of the most common location-based services (LBS) in the geo-aware social network market is the notification of friends geographically in proximity. In addition to the privacy threats related to the use of traditional LBS, there are other privacy threats specific to proximity services. Existing privacy-preserving solutions for LBS are not effective or directly applicable. For this reason, we developed techniques that specifically address the privacy threats of this type of services. The proposed techniques let a user control what is disclosed about her location and formally guarantee that these requirements are satisfied. An extensive empirical evaluation was performed, by using a dataset of user movement generated using an agent-based simulator, in which agents reflect the behavior of typical users of proximity services. The techniques were also integrated in a fully functional privacy-aware proximity service, for which we developed desktop and mobile clients

    Leveraging Client Processing for Location Privacy in Mobile Local Search

    Get PDF
    Usage of mobile services is growing rapidly. Most Internet-based services targeted for PC based browsers now have mobile counterparts. These mobile counterparts often are enhanced when they use user\u27s location as one of the inputs. Even some PC-based services such as point of interest Search, Mapping, Airline tickets, and software download mirrors now use user\u27s location in order to enhance their services. Location-based services are exactly these, that take the user\u27s location as an input and enhance the experience based on that. With increased use of these services comes the increased risk to location privacy. The location is considered an attribute that user\u27s hold as important to their privacy. Compromise of one\u27s location, in other words, loss of location privacy can have several detrimental effects on the user ranging from trivial annoyance to unreasonable persecution. More and more companies in the Internet economy rely exclusively on the huge data sets they collect about users. The more detailed and accurate the data a company has about its users, the more valuable the company is considered. No wonder that these companies are often the same companies that offer these services for free. This gives them an opportunity to collect more accurate location information. Research community in the location privacy protection area had to reciprocate by modeling an adversary that could be the service provider itself. To further drive this point, we show that a well-equipped service provider can infer user\u27s location even if the location information is not directly available by using other information he collects about the user. There is no dearth of proposals of several protocols and algorithms that protect location privacy. A lot of these earlier proposals require a trusted third party to play as an intermediary between the service provider and the user. These protocols use anonymization and/or obfuscation techniques to protect user\u27s identity and/or location. This requirement of trusted third parties comes with its own complications and risks and makes these proposals impractical in real life scenarios. Thus it is preferable that protocols do not require a trusted third party. We look at existing proposals in the area of private information retrieval. We present a brief survey of several proposals in the literature and implement two representative algorithms. We run experiments using different sizes of databases to ascertain their practicability and performance features. We show that private information retrieval based protocols still have long ways to go before they become practical enough for local search applications. We propose location privacy preserving mechanisms that take advantage of the processing power of modern mobile devices and provide configurable levels of location privacy. We propose these techniques both in the single query scenario and multiple query scenario. In single query scenario, the user issues a query to the server and obtains the answer. In the multiple query scenario, the user keeps sending queries as she moves about in the area of interest. We show that the multiple query scenario increases the accuracy of adversary\u27s determination of user\u27s location, and hence improvements are needed to cope with this situation. So, we propose an extension of the single query scenario that addresses this riskier multiple query scenario, still maintaining the practicability and acceptable performance when implemented on a modern mobile device. Later we propose a technique based on differential privacy that is inspired by differential privacy in statistical databases. All three mechanisms proposed by us are implemented in realistic hardware or simulators, run against simulated but real life data and their characteristics ascertained to show that they are practical and ready for adaptation. This dissertation study the privacy issues for location-based services in mobile environment and proposes a set of new techniques that eliminate the need for a trusted third party by implementing efficient algorithms on modern mobile hardware

    Location Privacy in the Era of Big Data and Machine Learning

    Get PDF
    Location data of individuals is one of the most sensitive sources of information that once revealed to ill-intended individuals or service providers, can cause severe privacy concerns. In this thesis, we aim at preserving the privacy of users in telecommunication networks against untrusted service providers as well as improving their privacy in the publication of location datasets. For improving the location privacy of users in telecommunication networks, we consider the movement of users in trajectories and investigate the threats that the query history may pose on location privacy. We develop an attack model based on the Viterbi algorithm termed as Viterbi attack, which represents a realistic privacy threat in trajectories. Next, we propose a metric called transition entropy that helps to evaluate the performance of dummy generation algorithms, followed by developing a robust dummy generation algorithm that can defend users against the Viterbi attack. We compare and evaluate our proposed algorithm and metric on a publicly available dataset published by Microsoft, i.e., Geolife dataset. For privacy preserving data publishing, an enhanced framework for anonymization of spatio-temporal trajectory datasets termed the machine learning based anonymization (MLA) is proposed. The framework consists of a robust alignment technique and a machine learning approach for clustering datasets. The framework and all the proposed algorithms are applied to the Geolife dataset, which includes GPS logs of over 180 users in Beijing, China

    Location reliability and gamification mechanisms for mobile crowd sensing

    Get PDF
    People-centric sensing with smart phones can be used for large scale sensing of the physical world by leveraging the sensors on the phones. This new type of sensing can be a scalable and cost-effective alternative to deploying static wireless sensor networks for dense sensing coverage across large areas. However, mobile people-centric sensing has two main issues: 1) Data reliability in sensed data and 2) Incentives for participants. To study these issues, this dissertation designs and develops McSense, a mobile crowd sensing system which provides monetary and social incentives to users. This dissertation proposes and evaluates two protocols for location reliability as a step toward achieving data reliability in sensed data, namely, ILR (Improving Location Reliability) and LINK (Location authentication through Immediate Neighbors Knowledge). ILR is a scheme which improves the location reliability of mobile crowd sensed data with minimal human efforts based on location validation using photo tasks and expanding the trust to nearby data points using periodic Bluetooth scanning. LINK is a location authentication protocol working independent of wireless carriers, in which nearby users help authenticate each other’s location claims using Bluetooth communication. The results of experiments done on Android phones show that the proposed protocols are capable of detecting a significant percentage of the malicious users claiming false location. Furthermore, simulations with the LINK protocol demonstrate that LINK can effectively thwart a number of colluding user attacks. This dissertation also proposes a mobile sensing game which helps collect crowd sensing data by incentivizing smart phone users to play sensing games on their phones. We design and implement a first person shooter sensing game, “Alien vs. Mobile User”, which employs techniques to attract users to unpopular regions. The user study results show that mobile gaming can be a successful alternative to micro-payments for fast and efficient area coverage in crowd sensing. It is observed that the proposed game design succeeds in achieving good player engagement

    Privacy Preserving Location-Based Client-Server Service Using Standard Cryptosystem

    Get PDF
    Location-Based Mobile Services (LBMS) is rapidly gaining ground and becoming increasingly popular, because of the variety of efficient and personalized services it offers. However, if users are not guaranteed their privacy and there is no assurance of genuineness of server\u27s response, the use of these services would be rendered useless and could deter its growth in mobile computing. This paper aims to provide confidentiality and integrity for communication that occurs between users and location service providers. A practical system that guarantees a user\u27s privacy and integrity of server\u27s response, using a cryptographic scheme with no trusted intermediary, is provided. This scheme also employs the use of symmetric and asymmetric encryption algorithms to ensure secure message and key transfer. In order to overcome the problem of computational complexities with these algorithms, AES-256 is used to encrypt the message and user\u27s location. Several researches have been done in this category but there is still no system that checks the integrity of server\u27s response. The proposed scheme is resistant to a range of susceptible attacks, because it provides a detailed security analysis and, when compared with related work, shows that it can actually guarantee privacy and integrity with faster average response time and higher throughput in LBMS

    UNDERSTANDING USER PERCEPTIONS AND PREFERENCES FOR MASS-MARKET INFORMATION SYSTEMS – LEVERAGING MARKET RESEARCH TECHNIQUES AND EXAMPLES IN PRIVACY-AWARE DESIGN

    Get PDF
    With cloud and mobile computing, a new category of software products emerges as mass-market information systems (IS) that addresses distributed and heterogeneous end-users. Understanding user requirements and the factors that drive user adoption are crucial for successful design of such systems. IS research has suggested several theories and models to explain user adoption and intentions to use, among them the IS Success Model and the Technology Acceptance Model (TAM). Although these approaches contribute to theoretical understanding of the adoption and use of IS in mass-markets, they are criticized for not being able to drive actionable insights on IS design as they consider the IT artifact as a black-box (i.e., they do not sufficiently address the system internal characteristics). We argue that IS needs to embrace market research techniques to understand and empirically assess user preferences and perceptions in order to integrate the "voice of the customer" in a mass-market scenario. More specifically, conjoint analysis (CA), from market research, can add user preference measurements for designing high-utility IS. CA has gained popularity in IS research, however little guidance is provided for its application in the domain. We aim at supporting the design of mass-market IS by establishing a reliable understanding of consumer’s preferences for multiple factors combing functional, non-functional and economic aspects. The results include a “Framework for Conjoint Analysis Studies in IS” and methodological guidance for applying CA. We apply our findings to the privacy-aware design of mass-market IS and evaluate their implications on user adoption. We contribute to both academia and practice. For academia, we contribute to a more nuanced conceptualization of the IT artifact (i.e., system) through a feature-oriented lens and a preference-based approach. We provide methodological guidelines that support researchers in studying user perceptions and preferences for design variations and extending that to adoption. Moreover, the empirical studies for privacy- aware design contribute to a better understanding of the domain specific applications of CA for IS design and evaluation with a nuanced assessment of user preferences for privacy-preserving features. For practice, we propose guidelines for integrating the voice of the customer for successful IS design. -- Les technologies cloud et mobiles ont fait Ă©merger une nouvelle catĂ©gorie de produits informatiques qui s’adressent Ă  des utilisateurs hĂ©tĂ©rogĂšnes par le biais de systĂšmes d'information (SI) distribuĂ©s. Les termes “SI de masse” sont employĂ©s pour dĂ©signer ces nouveaux systĂšmes. Une conception rĂ©ussie de ceux-ci passe par une phase essentielle de comprĂ©hension des besoins et des facteurs d'adoption des utilisateurs. Pour ce faire, la recherche en SI suggĂšre plusieurs thĂ©ories et modĂšles tels que le “IS Success Model” et le “Technology Acceptance Model”. Bien que ces approches contribuent Ă  la comprĂ©hension thĂ©orique de l'adoption et de l'utilisation des SI de masse, elles sont critiquĂ©es pour ne pas ĂȘtre en mesure de fournir des informations exploitables sur la conception de SI car elles considĂšrent l'artefact informatique comme une boĂźte noire. En d’autres termes, ces approches ne traitent pas suffisamment des caractĂ©ristiques internes du systĂšme. Nous soutenons que la recherche en SI doit adopter des techniques d'Ă©tude de marchĂ© afin de mieux intĂ©grer les exigences du client (“Voice of Customer”) dans un scĂ©nario de marchĂ© de masse. Plus prĂ©cisĂ©ment, l'analyse conjointe (AC), issue de la recherche sur les consommateurs, peut contribuer au dĂ©veloppement de systĂšme SI Ă  forte valeur d'usage. Si l’AC a gagnĂ© en popularitĂ© au sein de la recherche en SI, des recommandations quant Ă  son utilisation dans ce domaine restent rares. Nous entendons soutenir la conception de SI de masse en facilitant une identification fiable des prĂ©fĂ©rences des consommateurs sur de multiples facteurs combinant des aspects fonctionnels, non-fonctionnels et Ă©conomiques. Les rĂ©sultats comprennent un “Cadre de rĂ©fĂ©rence pour les Ă©tudes d'analyse conjointe en SI” et des recommandations mĂ©thodologiques pour l'application de l’AC. Nous avons utilisĂ© ces contributions pour concevoir un SI de masse particuliĂšrement sensible au respect de la vie privĂ©e des utilisateurs et nous avons Ă©valuĂ© l’impact de nos recherches sur l'adoption de ce systĂšme par ses utilisateurs. Ainsi, notre travail contribue tant Ă  la thĂ©orie qu’à la pratique des SI. Pour le monde universitaire, nous contribuons en proposant une conceptualisation plus nuancĂ©e de l'artefact informatique (c'est-Ă -dire du systĂšme) Ă  travers le prisme des fonctionnalitĂ©s et par une approche basĂ©e sur les prĂ©fĂ©rences utilisateurs. Par ailleurs, les chercheurs peuvent Ă©galement s'appuyer sur nos directives mĂ©thodologiques pour Ă©tudier les perceptions et les prĂ©fĂ©rences des utilisateurs pour diffĂ©rentes variations de conception et Ă©tendre cela Ă  l'adoption. De plus, nos Ă©tudes empiriques sur la conception d’un SI de masse sensible au respect de la vie privĂ©e des utilisateurs contribuent Ă  une meilleure comprĂ©hension de l’application des techniques CA dans ce domaine spĂ©cifique. Nos Ă©tudes incluent notamment une Ă©valuation nuancĂ©e des prĂ©fĂ©rences des utilisateurs sur des fonctionnalitĂ©s de protection de la vie privĂ©e. Pour les praticiens, nous proposons des lignes directrices qui permettent d’intĂ©grer les exigences des clients afin de concevoir un SI rĂ©ussi
    • 

    corecore