9,487 research outputs found

    High-contrast imaging of Sirius~A with VLT/SPHERE: Looking for giant planets down to one astronomical unit

    Get PDF
    Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed properties of the system. We present new coronagraphic observations obtained with VLT/SPHERE that explore, for the very first time, the innermost regions of the system down to 0.2" (0.5 AU) from Sirius A. Our observations cover the near-infrared from 0.95 to 2.3 ÎĽ\mum and they offer the best on-sky contrast ever reached at these angular separations. After detailing the steps of our SPHERE/IRDIFS data analysis, we present a robust method to derive detection limits for multi-spectral data from high-contrast imagers and spectrographs. In terms of raw performance, we report contrasts of 14.3 mag at 0.2", ~16.3 mag in the 0.4-1.0" range and down to 19 mag at 3.7". In physical units, our observations are sensitive to giant planets down to 11 MJupM_{Jup} at 0.5 AU, 6-7 MJupM_{Jup} in the 1-2 AU range and ~4 MJupM_{Jup} at 10 AU. Despite the exceptional sensitivity of our observations, we do not report the detection of additional companions around Sirius A. Using a Monte Carlo orbital analysis, we show that we can reject, with about 50% probability, the existence of an 8 MJupM_{Jup} planet orbiting at 1 AU. In addition to the results presented in the paper, we provide our SPHERE/IFS data reduction pipeline at http://people.lam.fr/vigan.arthur/ under the MIT license.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    04081 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 15.02.04 to 20.02.04, the Dagstuhl Seminar 04081 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Astrometry and Exoplanets: the Gaia Era, and Beyond

    Full text link
    The wealth of information in the Gaia catalogue of exoplanets will constitute a fundamental contribution to several hot topics of the astrophysics of planetary systems. I briefly review the potential impact of Gaia micro-arsec astrometry in several areas of exoplanet science, discuss what key follow-up observations might be required as a complement to Gaia data, and shed some light on the role of next generation astrometric facilities in the arena of planetary systems.Comment: 6 pages, 1 figure. Proceedings of the final ELSA Conference 'Gaia: at the frontiers of astrometry', Sevres (France), 7-11 June 2010. To appear in EAS Publication Series, EDP Science

    Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler

    Full text link
    The spectroscopy of faint planetary-mass companions to nearby stars is one of the main challenges that new-generation high-contrast spectro-imagers are going to face. In a previous work we presented a long slit coronagraph (LSC), for which the presence of a slit in the coronagraphic focal plane induces a complex distribution of energy in the Lyot pupil-plane that cannot be easily masked with a binary Lyot stop. To alleviate this concern, we propose to use a pupil apodization to suppress diffraction, creating an apodized long slit coronagraph (ALSC). After describing how the apodization is optimized, we demonstrate its advantages with respect to the CLC in the context of SPHERE/IRDIS long slit spectroscopy (LSS) mode at low-resolution with a 0.12" slit and 0.18" coronagraphic mask. We perform different sets of simulations with and without aberrations, and with and without a slit to demonstrate that the apodization is a more appropriate concept for LSS, at the expense of a significantly reduced throughput (37%) compared to the LSC. Then we perform detailed end-to-end simulations of the LSC and the ALSC that include realistic levels of aberrations to obtain datasets representing 1h of integration time on stars of spectral types A0 to M0 located at 10 pc. We insert spectra of planetary companions at different effective temperatures (Teff) and surface gravities (log g) into the data at angular separations of 0.3" to 1.5" and with contrast ratios from 6 to 18 mag. Using the SD method to subtract the speckles, we show that the ALSC brings a gain in sensitivity of up to 3 mag at 0.3" with respect to the LSC, which leads to a much better spectral extraction below 0.5". In terms of Teff, we demonstrate that at small angular separations the limit with the ALSC is always lower by at least 100K, inducing an increase of sensitivity of a factor up to 1.8 in objects' masses at young ages. [Abridged]Comment: 15 pages, 17 figures. Accepted for publication in A&

    Sequential Parameter Optimization

    Get PDF
    We provide a comprehensive, effective and very efficient methodology for the design and experimental analysis of algorithms. We rely on modern statistical techniques for tuning and understanding algorithms from an experimental perspective. Therefore, we make use of the sequential parameter optimization (SPO) method that has been successfully applied as a tuning procedure to numerous heuristics for practical and theoretical optimization problems. Two case studies, which illustrate the applicability of SPO to algorithm tuning and model selection, are presented
    • …
    corecore