1,505 research outputs found

    Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    Get PDF

    Network coding meets TCP

    Full text link
    We propose a mechanism that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs - the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-like sliding-window approach to network coding. Our scheme has the nice property that packet losses are essentially masked from the congestion control algorithm. Our algorithm therefore reacts to packet drops in a smooth manner, resulting in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our experiments show that our algorithm achieves higher throughput compared to TCP in the presence of lossy wireless links. We also establish the soundness and fairness properties of our algorithm.Comment: 9 pages, 9 figures, submitted to IEEE INFOCOM 200

    TCP-Aware Backpressure Routing and Scheduling

    Full text link
    In this work, we explore the performance of backpressure routing and scheduling for TCP flows over wireless networks. TCP and backpressure are not compatible due to a mismatch between the congestion control mechanism of TCP and the queue size based routing and scheduling of the backpressure framework. We propose a TCP-aware backpressure routing and scheduling that takes into account the behavior of TCP flows. TCP-aware backpressure (i) provides throughput optimality guarantees in the Lyapunov optimization framework, (ii) gracefully combines TCP and backpressure without making any changes to the TCP protocol, (iii) improves the throughput of TCP flows significantly, and (iv) provides fairness across competing TCP flows
    corecore