28,917 research outputs found

    On the Impact of Forgetting on Learning Machines

    Get PDF
    People tend not to have perfect memories when it comes to learning, or to anything else for that matter. Most formal studies of learning, however, assume a perfect memory. Some approaches have restricted the number of items that could be retained. We introduce a complexity theoretic accounting of memory utilization by learning machines. In our new model, memory is measured in bits as a function of the size of the input. There is a hierarchy of learnability based on increasing memory allotment. The lower bound results are proved using an unusual combination of pumping and mutual recursion theorem arguments. For technical reasons, it was necessary to consider two types of memory: long and short term

    Combating catastrophic forgetting with developmental compression

    Full text link
    Generally intelligent agents exhibit successful behavior across problems in several settings. Endemic in approaches to realize such intelligence in machines is catastrophic forgetting: sequential learning corrupts knowledge obtained earlier in the sequence, or tasks antagonistically compete for system resources. Methods for obviating catastrophic forgetting have sought to identify and preserve features of the system necessary to solve one problem when learning to solve another, or to enforce modularity such that minimally overlapping sub-functions contain task specific knowledge. While successful, both approaches scale poorly because they require larger architectures as the number of training instances grows, causing different parts of the system to specialize for separate subsets of the data. Here we present a method for addressing catastrophic forgetting called developmental compression. It exploits the mild impacts of developmental mutations to lessen adverse changes to previously-evolved capabilities and `compresses' specialized neural networks into a generalized one. In the absence of domain knowledge, developmental compression produces systems that avoid overt specialization, alleviating the need to engineer a bespoke system for every task permutation and suggesting better scalability than existing approaches. We validate this method on a robot control problem and hope to extend this approach to other machine learning domains in the future

    Factors Affecting the Development of Workforce Versatility

    Get PDF
    Among all strategies supporting the firms' flexibility and agility, the development of human resources versatility holds a promising place. This article presents an investigation of the factors affecting the development of this flexibility lever, related to the problem of planning and scheduling industrial activities, taking into account two dimensions of flexibility: the modulation of working time, which provides the company with fluctuating work capacities, and the versatility of operators: for all the multi-skilled workers, we adopt a dynamic vision of their competences. Therefore, this model takes into account the evolution of their skills over time, depending on how much they were put in practice in previous periods. The model was solved by using an approach relying on genetic algorithm that used an indirect encoding to build the chromosome genotype, and then a serial scheduling scheme is adopted to build the solution

    Adaptive Learning Method of Recurrent Temporal Deep Belief Network to Analyze Time Series Data

    Full text link
    Deep Learning has the hierarchical network architecture to represent the complicated features of input patterns. Such architecture is well known to represent higher learning capability compared with some conventional models if the best set of parameters in the optimal network structure is found. We have been developing the adaptive learning method that can discover the optimal network structure in Deep Belief Network (DBN). The learning method can construct the network structure with the optimal number of hidden neurons in each Restricted Boltzmann Machine and with the optimal number of layers in the DBN during learning phase. The network structure of the learning method can be self-organized according to given input patterns of big data set. In this paper, we embed the adaptive learning method into the recurrent temporal RBM and the self-generated layer into DBN. In order to verify the effectiveness of our proposed method, the experimental results are higher classification capability than the conventional methods in this paper.Comment: 8 pages, 9 figures. arXiv admin note: text overlap with arXiv:1807.03487, arXiv:1807.0348

    Echo State Condition at the Critical Point

    Full text link
    Recurrent networks with transfer functions that fulfill the Lipschitz continuity with K=1 may be echo state networks if certain limitations on the recurrent connectivity are applied. It has been shown that it is sufficient if the largest singular value of the recurrent connectivity is smaller than 1. The main achievement of this paper is a proof under which conditions the network is an echo state network even if the largest singular value is one. It turns out that in this critical case the exact shape of the transfer function plays a decisive role in determining whether the network still fulfills the echo state condition. In addition, several examples with one neuron networks are outlined to illustrate effects of critical connectivity. Moreover, within the manuscript a mathematical definition for a critical echo state network is suggested
    • …
    corecore