7,505 research outputs found

    On the Hidden Terminal Problem in Multi-rate Ad Hoc Wireless Networks

    Full text link

    Distributed Medium Access Control for QoS Support in Wireless Networks

    Get PDF
    With the rapid growth of multimedia applications and the advances of wireless communication technologies, quality-of-service (QoS) provisioning for multimedia services in heterogeneous wireless networks has been an important issue and drawn much attention from both academia and industry. Due to the hostile transmission environment and limited radio resources, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart. Moreover, due to the lack of central controller in the networks, distributed network control is required, adding complexity to QoS provisioning. In this thesis, medium access control (MAC) with QoS provisioning is investigated for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. Originally designed for high-rate data traffic, a WLAN has limited capability to support delay-sensitive voice traffic, and the service for voice traffic may be impacted by data traffic load, resulting in delay violation or large delay variance. Aiming at addressing these limitations, we propose an efficient MAC scheme and a call admission control algorithm to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition to supporting voice traffic, providing better services for data traffic in WLANs is another focus of our research. In the current WLANs, all the data traffic receives the same best-effort service, and it is difficult to provide further service differentiation for data traffic based on some specific requirements of customers or network service providers. In order to address this problem, we propose a novel token-based scheduling scheme, which provides great flexibility and facility to the network service provider for service class management. As a WLAN has small coverage and cannot meet the growing demand for wireless service requiring communications ``at anywhere and at anytime", a large scale multi-hop wireless network (e.g., wireless ad hoc networks and wireless mesh networks) becomes a necessity. Due to the location-dependent contentions, a number of problems (e.g., hidden/exposed terminal problem, unfairness, and priority reversal problem) appear in a multi-hop wireless environment, posing more challenges for QoS provisioning. To address these challenges, we propose a novel busy-tone based distributed MAC scheme for wireless ad hoc networks, and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme

    How do Wireless Chains Behave? The Impact of MAC Interactions

    Full text link
    In a Multi-hop Wireless Networks (MHWN), packets are routed between source and destination using a chain of intermediate nodes; chains are a fundamental communication structure in MHWNs whose behavior must be understood to enable building effective protocols. The behavior of chains is determined by a number of complex and interdependent processes that arise as the sources of different chain hops compete to transmit their packets on the shared medium. In this paper, we show that MAC level interactions play the primary role in determining the behavior of chains. We evaluate the types of chains that occur based on the MAC interactions between different links using realistic propagation and packet forwarding models. We discover that the presence of destructive interactions, due to different forms of hidden terminals, does not impact the throughput of an isolated chain significantly. However, due to the increased number of retransmissions required, the amount of bandwidth consumed is significantly higher in chains exhibiting destructive interactions, substantially influencing the overall network performance. These results are validated by testbed experiments. We finally study how different types of chains interfere with each other and discover that well behaved chains in terms of self-interference are more resilient to interference from other chains

    W-NINE: a two-stage emulation platform for mobile and wireless systems

    Get PDF
    More and more applications and protocols are now running on wireless networks. Testing the implementation of such applications and protocols is a real challenge as the position of the mobile terminals and environmental effects strongly affect the overall performance. Network emulation is often perceived as a good trade-off between experiments on operational wireless networks and discrete-event simulations on Opnet or ns-2. However, ensuring repeatability and realism in network emulation while taking into account mobility in a wireless environment is very difficult. This paper proposes a network emulation platform, called W-NINE, based on off-line computations preceding online pattern-based traffic shaping. The underlying concepts of repeatability, dynamicity, accuracy and realism are defined in the emulation context. Two different simple case studies illustrate the validity of our approach with respect to these concepts

    Adaptive multi-channel MAC protocol for dense VANET with directional antennas

    No full text
    Directional antennas in Ad hoc networks offer more benefits than the traditional antennas with omni-directional mode. With directional antennas, it can increase the spatial reuse of the wireless channel. A higher gain of directional antennas makes terminals a further transmission range and fewer hops to the destination. This paper presents the design, implementation and simulation results of a multi-channel Medium Access Control (MAC) protocols for dense Vehicular Ad hoc Networks using directional antennas with local beam tables. Numeric results show that our protocol performs better than the existing multichannel protocols in vehicular environment

    隠れ端末問題及びフロー内干渉キャンセルを考慮したワイヤレスアドホックネットワークに関する研究

    Get PDF
    Performance of CSMA/CA (carrier sense multiple access/collision avoidance) wireless ad hoc network is severely affected by hidden terminal (HT) problem that results in the failure of carrier sense and causes the packet error due to collision. This thesis proposes a method of improving the performance of multi-hop ad hoc network by 4 steps which can be summarized as follows. First, the thesis analyzes HT effect on CSMA/CA unicast communication taking into account actual radio environments including both fading and capture effect. Based on the analysis results, it is predicted that multi-hop transmission is vulnerable to HT problem because of intra-flow interference (IFI). Regarding to this issue, as the second step, a CINR (carrier to interference and noise ratio) -based analysis method is proposed that can precisely estimate the packet delivery probability for CSMA/CA multi-hop transmission suffering from HT-caused IFI under fading environment. The results prove that conventional CSMA/CA media access control cannot achieve efficient multi-hop transmission. Therefore, as the third step, this thesis further proposes IFI-canceling multi-hop transmission (IFIC-MHT) scheme that enables efficient relaying with the highest traffic load for half-duplex multi-hop networks. The interference cancellation (IC) technique employs adaptive signal processing with a normalized least mean square (NLMS) algorithm for channel estimation and has good BER (bit error rate) and PER (packet error rate) performance under a wide range of SNR (signal to noise ratio) and SIR (signal to interference ratio) conditions. A multi-hop packet transmission frame format dedicated to the IFIC is designed. Finally, this thesis studies the effect of IFIC on large-scale ad hoc network where both intra-flow interference and inter-flow interference take place and together affect the multi-hop transmission.電気通信大学201

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version
    corecore