6 research outputs found

    On the heterochromatic number of hypergraphs associated to geometric graphs and to matroids

    Full text link
    The heterochromatic number hc(H) of a non-empty hypergraph H is the smallest integer k such that for every colouring of the vertices of H with exactly k colours, there is a hyperedge of H all of whose vertices have different colours. We denote by nu(H) the number of vertices of H and by tau(H) the size of the smallest set containing at least two vertices of each hyperedge of H. For a complete geometric graph G with n > 2 vertices let H = H(G) be the hypergraph whose vertices are the edges of G and whose hyperedges are the edge sets of plane spanning trees of G. We prove that if G has at most one interior vertex, then hc(H) = nu(H) - tau(H) + 2. We also show that hc(H) = nu(H) - tau(H) + 2 whenever H is a hypergraph with vertex set and hyperedge set given by the ground set and the bases of a matroid, respectively

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Applications of Geometric and Spectral Methods in Graph Theory

    Get PDF
    Networks, or graphs, are useful for studying many things in today’s world. Graphs can be used to represent connections on social media, transportation networks, or even the internet. Because of this, it’s helpful to study graphs and learn what we can say about the structure of a given graph or what properties it might have. This dissertation focuses on the use of the probabilistic method and spectral graph theory to understand the geometric structure of graphs and find structures in graphs. We will also discuss graph curvature and how curvature lower bounds can be used to give us information about properties of graphs. A rainbow spanning tree in an edge-colored graph is a spanning tree in which each edge is a different color. Carraher, Hartke, and Horn showed that for n and C large enough, if G is an edge-colored copy of Kn in which each color class has size at most n/2, then G has at least [n/(C log n)] edge-disjoint rainbow spanning trees. Here we show that spectral graph theory can be used to prove that if G is any edge-colored graph with n vertices in which each color appears on at most δλ1/2 edges, where δ ≥ C log n for n and C sufficiently large and λ1 is the second-smallest eigenvalue of the normalized Laplacian matrix of G, then G contains at least [δλ1/ C log n] edge-disjoint rainbow spanning trees. We show how curvature lower bounds can be used in the context of understanding (personalized) PageRank, which was developed by Brin and Page. PageRank ranks the importance of webpages near a seed webpage, and we are interested in how this importance diffuses. We do this by using a notion of graph curvature introduced by Bauer, Horn, Lin, Lippner, Mangoubi, and Yau

    Subject Index Volumes 1–200

    Get PDF

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore