92,606 research outputs found

    Canopy structural modeling using object-oriented image classification and laser scanning

    Get PDF
    A terrestrial laser scanning (TLS) experiment was carried out in the EAGLE 2006 campaign to characterize and model the canopy structure of the Speulderbos forest. Semi-variogram analysis was used to describe spatial variability of the surface. The dependence of the spatial variability on the applied grid size showed, that in this forest spatial details of the digital surface model are lost in the case of larger than 0.3-0.4 m grid size. Voxel statistics was used for describing the density of the canopy structure. Five zones of the canopy were identified according to their density distribution. Basic geometric structures were tested for modeling the forest at the individual tree level. The results create a firm basis for modeling physical processes in the canopy

    IMPROVING SMART GRID SECURITY USING MERKLE TREES

    Get PDF
    Abstract—Presently nations worldwide are starting to convert their aging electrical power infrastructures into modern, dynamic power grids. Smart Grid offers much in the way of efficiencies and robustness to the electrical power grid, however its heavy reliance on communication networks will leave it more vulnerable to attack than present day grids. This paper looks at the threat to public key cryptography systems from a fully realized quantum computer and how this could impact the Smart Grid. We argue for the use of Merkle Trees in place of public key cryptography for authentication of devices in wireless mesh networks that are used in Smart Grid applications

    Quantitative and qualitative characteristics of greenery in suburban residential districts of Metro Manila

    Get PDF
    This case study was conducted to better understand the present situation of urban greenery in Marikina City, in the suburbs of metropolitan Manila, a typical large Asian city. A vegetation survey was conducted in residential districts of Marikina City, and the quantitative and qualitative characteristics of trees were analyzed. Lot size had some influence on the quantity of greenery in residential lots. In smaller lots, however, quantity did not increase in proportion to lot size. It appears, then, that the land-use controls for individual lots did not function effectively. Quantitative differences of greenery were related to qualitative differences, depending on the year or period of development of the residential area. In the newly developed residential lots, the greenery is comprised mostly of ornamental trees. Under the present circumstances, there is no assurance of sustaining the desired quantity of greenery in smaller residential lots. From these results, we proposed that regulations on lot size/coverage and promotion of tree planting involving local residents are needed to sustain urban greenery in residential districts

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders

    Developing Allometric Equations for Teak Plantations Located in the Coastal Region of Ecuador from Terrestrial Laser Scanning Data

    Get PDF
    Traditional studies aimed at developing allometric models to estimate dry above-ground biomass (AGB) and other tree-level variables, such as tree stem commercial volume (TSCV) or tree stem volume (TSV), usually involves cutting down the trees. Although this method has low uncertainty, it is quite costly and inefficient since it requires a very time-consuming field work. In order to assist in data collection and processing, remote sensing is allowing the application of non-destructive sampling methods such as that based on terrestrial laser scanning (TLS). In this work, TLS-derived point clouds were used to digitally reconstruct the tree stem of a set of teak trees (Tectona grandis Linn. F.) from 58 circular reference plots of 18 m radius belonging to three different plantations located in the Coastal Region of Ecuador. After manually selecting the appropriate trees from the entire sample, semi-automatic data processing was performed to provide measurements of TSCV and TSV, together with estimates of AGB values at tree level. These observed values were used to develop allometric models, based on diameter at breast height (DBH), total tree height (h), or the metric DBH2 × h, by applying a robust regression method to remove likely outliers. Results showed that the developed allometric models performed reasonably well, especially those based on the metric DBH2 × h, providing low bias estimates and relative RMSE values of 21.60% and 16.41% for TSCV and TSV, respectively. Allometric models only based on tree height were derived from replacing DBH by h in the expression DBH2 x h, according to adjusted expressions depending on DBH classes (ranges of DBH). This finding can facilitate the obtaining of variables such as AGB (carbon stock) and commercial volume of wood over teak plantations in the Coastal Region of Ecuador from only knowing the tree height, constituting a promising method to address large-scale teak plantations monitoring from the canopy height models derived from digital aerial stereophotogrammetry
    corecore