3,688 research outputs found

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs

    Full text link
    Building on work of Cai, F\"urer, and Immerman \cite{CFI92}, we show two hardness results for the Graph Isomorphism problem. First, we show that there are pairs of nonisomorphic nn-vertex graphs GG and HH such that any sum-of-squares (SOS) proof of nonisomorphism requires degree Ω(n)\Omega(n). In other words, we show an Ω(n)\Omega(n)-round integrality gap for the Lasserre SDP relaxation. In fact, we show this for pairs GG and HH which are not even (1−10−14)(1-10^{-14})-isomorphic. (Here we say that two nn-vertex, mm-edge graphs GG and HH are α\alpha-isomorphic if there is a bijection between their vertices which preserves at least αm\alpha m edges.) Our second result is that under the {\sc R3XOR} Hypothesis \cite{Fei02} (and also any of a class of hypotheses which generalize the {\sc R3XOR} Hypothesis), the \emph{robust} Graph Isomorphism problem is hard. I.e.\ for every ϵ>0\epsilon > 0, there is no efficient algorithm which can distinguish graph pairs which are (1−ϵ)(1-\epsilon)-isomorphic from pairs which are not even (1−ϵ0)(1-\epsilon_0)-isomorphic for some universal constant ϵ0\epsilon_0. Along the way we prove a robust asymmetry result for random graphs and hypergraphs which may be of independent interest

    Spectrally Robust Graph Isomorphism

    Get PDF
    We initiate the study of spectral generalizations of the graph isomorphism problem. b) The Spectral Graph Dominance (SGD) problem: On input of two graphs G and H does there exist a permutation pi such that G preceq pi(H)? c) The Spectrally Robust Graph Isomorphism (kappa-SRGI) problem: On input of two graphs G and H, find the smallest number kappa over all permutations pi such that pi(H) preceq G preceq kappa c pi(H) for some c. SRGI is a natural formulation of the network alignment problem that has various applications, most notably in computational biology. G preceq c H means that for all vectors x we have x^T L_G x <= c x^T L_H x, where L_G is the Laplacian G. We prove NP-hardness for SGD. We also present a kappa^3-approximation algorithm for SRGI for the case when both G and H are bounded-degree trees. The algorithm runs in polynomial time when kappa is a constant
    • …
    corecore