791 research outputs found

    A new construction for a QMA complete 3-local Hamiltonian

    Get PDF
    We present a new way of encoding a quantum computation into a 3-local Hamiltonian. Our construction is novel in that it does not include any terms that induce legal-illegal clock transitions. Therefore, the weights of the terms in the Hamiltonian do not scale with the size of the problem as in previous constructions. This improves the construction by Kempe and Regev, who were the first to prove that 3-local Hamiltonian is complete for the complexity class QMA, the quantum analogue of NP. Quantum k-SAT, a restricted version of the local Hamiltonian problem using only projector terms, was introduced by Bravyi as an analogue of the classical k-SAT problem. Bravyi proved that quantum 4-SAT is complete for the class QMA with one-sided error (QMA_1) and that quantum 2-SAT is in P. We give an encoding of a quantum circuit into a quantum 4-SAT Hamiltonian using only 3-local terms. As an intermediate step to this 3-local construction, we show that quantum 3-SAT for particles with dimensions 3x2x2 (a qutrit and two qubits) is QMA_1 complete. The complexity of quantum 3-SAT with qubits remains an open question.Comment: 11 pages, 4 figure

    The power of quantum systems on a line

    Full text link
    We study the computational strength of quantum particles (each of finite dimensionality) arranged on a line. First, we prove that it is possible to perform universal adiabatic quantum computation using a one-dimensional quantum system (with 9 states per particle). This might have practical implications for experimentalists interested in constructing an adiabatic quantum computer. Building on the same construction, but with some additional technical effort and 12 states per particle, we show that the problem of approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to the fact that the analogous classical problem, namely, one-dimensional MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the QMA-completeness result requires an additional idea beyond the usual techniques in the area: Not all illegal configurations can be ruled out by local checks, so instead we rule out such illegal configurations because they would, in the future, evolve into a state which can be seen locally to be illegal. Our construction implies (assuming the quantum Church-Turing thesis and that quantum computers cannot efficiently solve QMA-complete problems) that there are one-dimensional systems which take an exponential time to relax to their ground states at any temperature, making them candidates for being one-dimensional spin glasses.Comment: 21 pages. v2 has numerous corrections and clarifications, and most importantly a new author, merged from arXiv:0705.4067. v3 is the published version, with additional clarifications, publisher's version available at http://www.springerlink.co
    corecore