87 research outputs found

    The Hamilton-Waterloo Problem with even cycle lengths

    Full text link
    The Hamilton-Waterloo Problem HWP(v;m,n;α,β)(v;m,n;\alpha,\beta) asks for a 2-factorization of the complete graph KvK_v or KvIK_v-I, the complete graph with the edges of a 1-factor removed, into α\alpha CmC_m-factors and β\beta CnC_n-factors, where 3m<n3 \leq m < n. In the case that mm and nn are both even, the problem has been solved except possibly when 1{α,β}1 \in \{\alpha,\beta\} or when α\alpha and β\beta are both odd, in which case necessarily v2(mod4)v \equiv 2 \pmod{4}. In this paper, we develop a new construction that creates factorizations with larger cycles from existing factorizations under certain conditions. This construction enables us to show that there is a solution to HWP(v;2m,2n;α,β)(v;2m,2n;\alpha,\beta) for odd α\alpha and β\beta whenever the obvious necessary conditions hold, except possibly if β=1\beta=1; β=3\beta=3 and gcd(m,n)=1\gcd(m,n)=1; α=1\alpha=1; or v=2mn/gcd(m,n)v=2mn/\gcd(m,n). This result almost completely settles the existence problem for even cycles, other than the possible exceptions noted above

    A survey on constructive methods for the Oberwolfach problem and its variants

    Full text link
    The generalized Oberwolfach problem asks for a decomposition of a graph GG into specified 2-regular spanning subgraphs F1,,FkF_1,\ldots, F_k, called factors. The classic Oberwolfach problem corresponds to the case when all of the factors are pairwise isomorphic, and GG is the complete graph of odd order or the complete graph of even order with the edges of a 11-factor removed. When there are two possible factor types, it is called the Hamilton-Waterloo problem. In this paper we present a survey of constructive methods which have allowed recent progress in this area. Specifically, we consider blow-up type constructions, particularly as applied to the case when each factor consists of cycles of the same length. We consider the case when the factors are all bipartite (and hence consist of even cycles) and a method for using circulant graphs to find solutions. We also consider constructions which yield solutions with well-behaved automorphisms.Comment: To be published in the Fields Institute Communications book series. 23 pages, 2 figure

    Constructing uniform 2-factorizations via row-sum matrices: solutions to the Hamilton-Waterloo problem

    Full text link
    In this paper, we formally introduce the concept of a row-sum matrix over an arbitrary group GG. When GG is cyclic, these types of matrices have been widely used to build uniform 2-factorizations of small Cayley graphs (or, Cayley subgraphs of blown-up cycles), which themselves factorize complete (equipartite) graphs. Here, we construct row-sum matrices over a class of non-abelian groups, the generalized dihedral groups, and we use them to construct uniform 22-factorizations that solve infinitely many open cases of the Hamilton-Waterloo problem, thus filling up large parts of the gaps in the spectrum of orders for which such factorizations are known to exist

    On the minisymposium problem

    Full text link
    The generalized Oberwolfach problem asks for a factorization of the complete graph KvK_v into prescribed 22-factors and at most a 11-factor. When all 22-factors are pairwise isomorphic and vv is odd, we have the classic Oberwolfach problem, which was originally stated as a seating problem: given vv attendees at a conference with tt circular tables such that the iith table seats aia_i people and i=1tai=v{\sum_{i=1}^t a_i = v}, find a seating arrangement over the v12\frac{v-1}{2} days of the conference, so that every person sits next to each other person exactly once. In this paper we introduce the related {\em minisymposium problem}, which requires a solution to the generalized Oberwolfach problem on vv vertices that contains a subsystem on mm vertices. That is, the decomposition restricted to the required mm vertices is a solution to the generalized Oberwolfach problem on mm vertices. In the seating context above, the larger conference contains a minisymposium of mm participants, and we also require that pairs of these mm participants be seated next to each other for m12\left\lfloor\frac{m-1}{2}\right\rfloor of the days. When the cycles are as long as possible, i.e.\ vv, mm and vmv-m, a flexible method of Hilton and Johnson provides a solution. We use this result to provide further solutions when vm2(mod4)v \equiv m \equiv 2 \pmod 4 and all cycle lengths are even. In addition, we provide extensive results in the case where all cycle lengths are equal to kk, solving all cases when mvm\mid v, except possibly when kk is odd and vv is even.Comment: 25 page

    On the Hamilton-Waterloo problem: the case of two cycles sizes of different parity

    Get PDF
    The Hamilton-Waterloo problem asks for a decomposition of the complete graph of order v into r copies of a 2-factor F1 and s copies of a 2-factor F2 such that r+s = v−1 2 . If F1 consists of m-cycles and F2 consists of n cycles, we say that a solution to (m, n)- HWP(v; r, s) exists. The goal is to find a decomposition for every possible pair (r, s). In this paper, we show that for odd x and y, there is a solution to (2kx, y)-HWP(vm; r, s) if gcd(x, y) ≥ 3, m ≥ 3, and both x and y divide v, except possibly when 1 ∈ {r, s}

    On uniformly resolvable (C4,K1,3)(C_4,K_{1,3})-designs

    Get PDF
    In this paper we consider the uniformly resolvable decompositions of the complete graph KvK_v minus a 1-factor (KvI)(K_v − I) into subgraphs where each resolution class contains only blocks isomorphic to the same graph. We completely determine the spectrum for the case in which all the resolution classes consist of either 4-cycles or 3-stars
    corecore