225,036 research outputs found

    On the geometry of the solutions of the cover problem

    Get PDF
    For a given system (A;B) and a subspace S, the Cover Problem consits of ¯nding all (A;B)-invariant subspaces containing S. For controllable systems, the set of these subspaces can be suitably strati¯ed. In this paper, necessary and su±cient conditions are given for the cover problem to have a solution on a given strata. Then the geometry of these solutions is studied. In particular, the set of the solutions is provided with a di®erentiable structure and a parametrization of all solutions is obtained through a coordinate atlas of the corresponding smooth manifold

    Complexity of convex optimization using geometry-based measures and a reference point

    Get PDF
    Abstract in HTML and working paper for download in PDF available via World Wide Web at the Social Science Research Network.Title from cover. "September 2001."Includes bibliographical references (leaf 29).Our concern lies in solving the following convex optimization problem: minimize cx subject to Ax=b, x \in P, where P is a closed convex set. We bound the complexity of computing an almost-optimal solution of this problem in terms of natural geometry-based measures of the feasible region and the level-set of almost-optimal solutions, relative to a given reference point xr that might be close to the feasible region and/or the almost-optimal level set. This contrasts with other complexity bounds for convex optimization that rely on data-based condition numbers or algebraic measures, and that do not take into account any a priori reference point information. Keywords: Convex Optimization, Complexity, Interior-Point Method, Barrier Method.Robert M. Freund

    Comparing the efficiency of different structural skeleton for base isolated domes

    Get PDF
    The structural concept of the dome dates back to the Pantheon in Rome. It is used as the cover of many churches and mosques all around the world. Light solutions, with a well-visible dome-shaped truss skeleton, are often preferred in modern architecture. Base isolation techniques can be adopted to mitigate the seismic effects. This paper aims to investigate the efficiency of different designs for the truss skeleton. To solve the problem, one has to assign the constraints, the materials and the geometry of the dome, its supporting structure and the isolation devices (number, locations, and type). The screening of the effects of different scheme assumptions on structural behaviour provides a better insight into the problem

    Topological Stability of Kinetic kk-Centers

    Get PDF
    We study the kk-center problem in a kinetic setting: given a set of continuously moving points PP in the plane, determine a set of kk (moving) disks that cover PP at every time step, such that the disks are as small as possible at any point in time. Whereas the optimal solution over time may exhibit discontinuous changes, many practical applications require the solution to be stable: the disks must move smoothly over time. Existing results on this problem require the disks to move with a bounded speed, but this model is very hard to work with. Hence, the results are limited and offer little theoretical insight. Instead, we study the topological stability of kk-centers. Topological stability was recently introduced and simply requires the solution to change continuously, but may do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii of an optimal but unstable solution and the radii of a topologically stable solution---the topological stability ratio---considering various metrics and various optimization criteria. For k=2k = 2 we provide tight bounds, and for small k>2k > 2 we can obtain nontrivial lower and upper bounds. Finally, we provide an algorithm to compute the topological stability ratio in polynomial time for constant kk

    Facets for Art Gallery Problems

    Full text link
    The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The problem is known to be NP-hard, and its inherent continuous structure (with both the set of points that need to be guarded and the set of points that can be used for guarding being uncountably infinite) makes it difficult to apply a straightforward formulation as an Integer Linear Program. We use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded. Particularly useful are cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time. We also characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our approach. Our cutting plane technique yields a significant improvement in terms of speed and solution quality due to considerably reduced integrality gaps as compared to the approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl
    corecore