4,668 research outputs found

    3D freeform surfaces from planar sketches using neural networks

    Get PDF
    A novel intelligent approach into 3D freeform surface reconstruction from planar sketches is proposed. A multilayer perceptron (MLP) neural network is employed to induce 3D freeform surfaces from planar freehand curves. Planar curves were used to represent the boundaries of a freeform surface patch. The curves were varied iteratively and sampled to produce training data to train and test the neural network. The obtained results demonstrate that the network successfully learned the inverse-projection map and correctly inferred the respective surfaces from fresh curves

    Identifying and attacking the saddle point problem in high-dimensional non-convex optimization

    Full text link
    A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, neural network theory, and empirical evidence, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new approach to second-order optimization, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep or recurrent neural network training, and provide numerical evidence for its superior optimization performance.Comment: The theoretical review and analysis in this article draw heavily from arXiv:1405.4604 [cs.LG

    Neural Network Methods for Boundary Value Problems Defined in Arbitrarily Shaped Domains

    Full text link
    Partial differential equations (PDEs) with Dirichlet boundary conditions defined on boundaries with simple geometry have been succesfuly treated using sigmoidal multilayer perceptrons in previous works. This article deals with the case of complex boundary geometry, where the boundary is determined by a number of points that belong to it and are closely located, so as to offer a reasonable representation. Two networks are employed: a multilayer perceptron and a radial basis function network. The later is used to account for the satisfaction of the boundary conditions. The method has been successfuly tested on two-dimensional and three-dimensional PDEs and has yielded accurate solutions
    corecore