266 research outputs found

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P′\mathcal{P}' such that (1) P′\mathcal{P}' contains P\mathcal{P}, (2) P′\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P′\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P′\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Constrained Geodesic Centers of a Simple Polygon

    Get PDF
    For any two points in a simple polygon P, the geodesic distance between them is the length of the shortest path contained in P that connects them. A geodesic center of a set S of sites (points) with respect to P is a point in P that minimizes the geodesic distance to its farthest site. In many realistic facility location problems, however, the facilities are constrained to lie in feasible regions. In this paper, we show how to compute the geodesic centers constrained to a set of line segments or simple polygonal regions contained in P. Our results provide substantial improvements over previous algorithms

    An Optimal Deterministic Algorithm for Geodesic Farthest-Point Voronoi Diagrams in Simple Polygons

    Get PDF
    Given a set S of m point sites in a simple polygon P of n vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for S in P. It is known that the problem has an Ω(n + m log m) time lower bound. Previously, a randomized algorithm was proposed [Barba, SoCG 2019] that can solve the problem in O(n + m log m) expected time. The previous best deterministic algorithms solve the problem in O(n log log n + m log m) time [Oh, Barba, and Ahn, SoCG 2016] or in O(n + m log m + m log2 n) time [Oh and Ahn, SoCG 2017]. In this paper, we present a deterministic algorithm of O(n + m log m) time, which is optimal. This answers an open question posed by Mitchell in the Handbook of Computational Geometry two decades ago

    Optimal Algorithm for Geodesic Farthest-Point Voronoi Diagrams

    Get PDF
    Let P be a simple polygon with n vertices. For any two points in P, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in P. Given a set S of m sites being a subset of the vertices of P, we present the first randomized algorithm to compute the geodesic farthest-point Voronoi diagram of S in P running in expected O(n + m) time. That is, a partition of P into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. This algorithm can be extended to run in expected O(n + m log m) time when S is an arbitrary set of m sites contained in P
    • …
    corecore