72,835 research outputs found

    CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path Prediction

    Full text link
    Pedestrian path prediction is an essential topic in computer vision and video understanding. Having insight into the movement of pedestrians is crucial for ensuring safe operation in a variety of applications including autonomous vehicles, social robots, and environmental monitoring. Current works in this area utilize complex generative or recurrent methods to capture many possible futures. However, despite the inherent real-time nature of predicting future paths, little work has been done to explore accurate and computationally efficient approaches for this task. To this end, we propose a convolutional approach for real-time pedestrian path prediction, CARPe. It utilizes a variation of Graph Isomorphism Networks in combination with an agile convolutional neural network design to form a fast and accurate path prediction approach. Notable results in both inference speed and prediction accuracy are achieved, improving FPS considerably in comparison to current state-of-the-art methods while delivering competitive accuracy on well-known path prediction datasets.Comment: AAAI-21 Camera Read

    Precipitation nowcasting with generative diffusion models

    Full text link
    In recent years traditional numerical methods for accurate weather prediction have been increasingly challenged by deep learning methods. Numerous historical datasets used for short and medium-range weather forecasts are typically organized into a regular spatial grid structure. This arrangement closely resembles images: each weather variable can be visualized as a map or, when considering the temporal axis, as a video. Several classes of generative models, comprising Generative Adversarial Networks, Variational Autoencoders, or the recent Denoising Diffusion Models have largely proved their applicability to the next-frame prediction problem, and is thus natural to test their performance on the weather prediction benchmarks. Diffusion models are particularly appealing in this context, due to the intrinsically probabilistic nature of weather forecasting: what we are really interested to model is the probability distribution of weather indicators, whose expected value is the most likely prediction. In our study, we focus on a specific subset of the ERA-5 dataset, which includes hourly data pertaining to Central Europe from the years 2016 to 2021. Within this context, we examine the efficacy of diffusion models in handling the task of precipitation nowcasting. Our work is conducted in comparison to the performance of well-established U-Net models, as documented in the existing literature. Our proposed approach of Generative Ensemble Diffusion (GED) utilizes a diffusion model to generate a set of possible weather scenarios which are then amalgamated into a probable prediction via the use of a post-processing network. This approach, in comparison to recent deep learning models, substantially outperformed them in terms of overall performance.Comment: 21 pages, 6 figure

    Action perception as hypothesis testing

    Get PDF
    We present a novel computational model that describes action perception as an active inferential process that combines motor prediction (the reuse of our own motor system to predict perceived movements) and hypothesis testing (the use of eye movements to disambiguate amongst hypotheses). The system uses a generative model of how (arm and hand) actions are performed to generate hypothesis-specific visual predictions, and directs saccades to the most informative places of the visual scene to test these predictions – and underlying hypotheses. We test the model using eye movement data from a human action observation study. In both the human study and our model, saccades are proactive whenever context affords accurate action prediction; but uncertainty induces a more reactive gaze strategy, via tracking the observed movements. Our model offers a novel perspective on action observation that highlights its active nature based on prediction dynamics and hypothesis testing

    Diverse and Expressive Speech Prosody Prediction with Denoising Diffusion Probabilistic Model

    Full text link
    Expressive human speech generally abounds with rich and flexible speech prosody variations. The speech prosody predictors in existing expressive speech synthesis methods mostly produce deterministic predictions, which are learned by directly minimizing the norm of prosody prediction error. Its unimodal nature leads to a mismatch with ground truth distribution and harms the model's ability in making diverse predictions. Thus, we propose a novel prosody predictor based on the denoising diffusion probabilistic model to take advantage of its high-quality generative modeling and training stability. Experiment results confirm that the proposed prosody predictor outperforms the deterministic baseline on both the expressiveness and diversity of prediction results with even fewer network parameters.Comment: Proceedings of Interspeech 2023 (doi: 10.21437/Interspeech.2023-715), demo site at https://thuhcsi.github.io/interspeech2023-DiffVar
    • …
    corecore