578 research outputs found

    Guaranteeing the diversity of number generators

    Get PDF
    A major problem in using iterative number generators of the form x_i=f(x_{i-1}) is that they can enter unexpectedly short cycles. This is hard to analyze when the generator is designed, hard to detect in real time when the generator is used, and can have devastating cryptanalytic implications. In this paper we define a measure of security, called_sequence_diversity_, which generalizes the notion of cycle-length for non-iterative generators. We then introduce the class of counter assisted generators, and show how to turn any iterative generator (even a bad one designed or seeded by an adversary) into a counter assisted generator with a provably high diversity, without reducing the quality of generators which are already cryptographically strong.Comment: Small update

    On the Design of LIL Tests for (Pseudo) Random Generators and Some Experimental Results

    Get PDF
    NIST SP800-22 (2010) proposes the state of art testing suite for (pseudo) random generators to detect deviations of a binary sequence from randomness. On the one hand, as a counter example to NIST SP800-22 test suite, it is easy to construct functions that are considered as GOOD pseudorandom generators by NIST SP800-22 test suite though the output of these functions are easily distinguishable from the uniform distribution. Thus these functions are not pseudorandom generators by definition. On the other hand, NIST SP800-22 does not cover some of the important laws for randomness. Two fundamental limit theorems about random binary strings are the central limit theorem and the law of the iterated logarithm (LIL). Several frequency related tests in NIST SP800-22 cover the central limit theorem while no NIST SP800-22 test covers LIL. This paper proposes techniques to address the above challenges that NIST SP800-22 testing suite faces. Firstly, we propose statistical distance based testing techniques for (pseudo) random generators to reduce the above mentioned Type II errors in NIST SP800-22 test suite. Secondly, we propose LIL based statistical testing techniques, calculate the probabilities, and carry out experimental tests on widely used pseudorandom generators by generating around 30TB of pseudorandom sequences. The experimental results show that for a sample size of 1000 sequences (2TB), the statistical distance between the generated sequences and the uniform distribution is around 0.07 (with 00 for statistically indistinguishable and 11 for completely distinguishable) and the root-mean-square deviation is around 0.005
    • …
    corecore