404 research outputs found

    Lie Symmetry Analysis for Cosserat Rods

    Get PDF
    We consider a subsystem of the Special Cosserat Theory of Rods and construct an explicit form of its solution that depends on three arbitrary functions in (s,t) and three arbitrary functions in t. Assuming analyticity of the arbitrary functions in a domain under consideration, we prove that the obtained solution is analytic and general. The Special Cosserat Theory of Rods describes the dynamic equilibrium of 1-dimensional continua, i.e. slender structures like fibers, by means of a system of partial differential equations.Comment: 12 Pages, 1 Figur

    A frictional Cosserat model for the flow of granular materials through a vertical channel

    Full text link
    A rigid-plastic Cosserat model has been used to study dense, fully developed flow of granular materials through a vertical channel. Frictional models based on the classical continuum do not predict the occurrence of shear layers, at variance with experimental observations. This feature has been attributed to the absence of a material length scale in their constitutive equations. The present model incorporates such a material length scale by treating the granular material as a Cosserat continuum. Thus localised couple stresses exist and the stress tensor is asymmetric. The velocity profiles predicted by the model are in close agreement with available experimental data. The predicted dependence of the shear layer thickness on the width of the channel is in reasonable agreement with data. In the limit of the ratio of the particle diameter to the half-width of the channel being small, the model predicts that the shear layer thickness scaled by the particle diameter grows.Comment: 17 pages, 12 PostScript figures, uses AmsLaTeX, psfrag and natbib. Accepted for publication in Acta Mechanic

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    Chirality in isotropic linear gradient elasticity

    Get PDF
    AbstractChirality is, generally speaking, the property of an object that can be classified as left- or right-handed. Though it plays an important role in many branches of science, chirality is encountered less often in continuum mechanics, so most classical material models do not account for it. In the context of elasticity, for example, classical elasticity is not chiral, leading different authors to use Cosserat elasticity to allow modelling of chiral behaviour.Gradient elasticity can also model chiral behaviour, however this has received much less attention than its Cosserat counterpart. This paper shows how in the case of isotropic linear gradient elasticity a single additional parameter can be introduced that describes chiral behaviour. This additional parameter, directly linked to three-dimensional deformation, can be either negative or positive, with its sign indicating a discrimination between the two opposite directions of torsion. Two simple examples are presented to show the practical effects of the chiral behaviour

    Size effects in cellular solids

    Get PDF
    corecore