17,874 research outputs found

    On the Gap between Scalar and Vector Solutions of Generalized Combination Networks

    Full text link
    We study scalar-linear and vector-linear solutions to the generalized combination network. We derive new upper and lower bounds on the maximum number of nodes in the middle layer, depending on the network parameters. These bounds improve and extend the parameter range of known bounds. Using these new bounds we present a general lower bound on the gap in the alphabet size between scalar-linear and vector-linear solutions.Comment: 6 pages, 1 figures, accepted by ISIT 2020, revised according to the review

    Spontaneous P-violation in QCD in extreme conditions

    Full text link
    We investigate the possibility of parity being spontaneously violated in QCD at finite baryon density and temperature. The analysis is done for an idealized homogeneous and infinite nuclear matter where the influence of density can be examined with the help of constant chemical potential. QCD is approximated by a generalized sigma-model with two isomultiplets of scalars and pseudoscalars. The interaction with the chemical potential is introduced via the coupling to constituent quark fields as nucleons are not considered as point-like degrees of freedom in our approach. This mechanism of parity violation is based on interplay between lightest and heavier degrees of freedom and it cannot be understood in simple models retaining the pion and nucleon sectors solely. We argue that, in the appropriate environment (dense and hot nuclear matter of a few normal densities and moderate temperatures), parity violation may be the rule rather than the exception and its occurrence is well compatible with the existence of stable bound state of normal nuclear matter. We prove that the so called 'chiral collapse' never takes place for the parameter region supporting spontaneous parity violation.Comment: 9 page

    Background Independent Quantum Gravity: A Status Report

    Full text link
    The goal of this article is to present an introduction to loop quantum gravity -a background independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.Comment: 125 pages, 5 figures (eps format), the final version published in CQ
    corecore