444 research outputs found

    Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: Energy efficiency and outage probability analysis

    Get PDF
    In this time, energy efficiency (EE), measured in bits per Watt, has been considered as an important emerging metric in energy-constrained wireless communication networks because of their energy shortage. In this paper, we investigate power beacon assisted (PB) energy harvesting (EH) in half-duplex (HD) communication network under co-channel Interferer over Rayleigh fading environment. In this work, we investigate the model system with the time switching (TS) protocol. Firstly, the exact and asymptotic form expressions of the outage probability (OP) are analyzed and derived. Then the system EE is investigated and the influence of the primary system parameters on the system performance. Finally, we verify the correctness of the analytical expressions using Monte Carlo simulation. Finally, we can state that the simulation and analytical results are the same.Web of Science1213art. no. 257

    Wireless Information and Power Transfer in Communication Networks: Performance Analysis and Optimal Resource Allocation

    Get PDF
    Energy harvesting is considered as a prominent solution to supply the energy demand for low-power consuming devices and sensor nodes. This approach relinquishes the requirements of wired connections and regular battery replacements. This thesis analyzes the performance of energy harvesting communication networks under various operation protocols and multiple access schemes. Furthermore, since the radio frequency signal has energy, in addition to conveying information, it is also possible to power energy harvesting component while establishing data connectivity with information-decoding component. This leads to the concept of simultaneous wireless information and power transfer. The central goal of this thesis is to conduct a performance analysis in terms of throughput and energy efficiency, and determine optimal resource allocation strategies for wireless information and power transfer. In the first part of the thesis, simultaneous transfer of information and power through wireless links to energy harvesting and information decoding components is studied considering finite alphabet inputs. The concept of non-uniform probability distribution is introduced for an arbitrary input, and mathematical formulations that relate probability distribution to the required harvested energy level are provided. In addition, impact of statistical quality of service (QoS) constraints on the overall performance is studied, and power control algorithms are provided. Next, power allocation strategies that maximize the system energy efficiency subject to peak power constraints are determined for fading multiple access channels. The impact of channel characteristics, circuit power consumption and peak power level on the node selection, i.e., activation of user equipment, and the corresponding optimal transmit power level are addressed. Initially, wireless information transfer only is considered and subsequently wireless power transfer is taken into account. Assuming energy harvesting components, two scenarios are addressed based on the receiver architecture, i.e, having separated antenna or common antenna for the information decoding and energy harvesting components. In both cases, optimal SWIPT power control policies are identified, and impact of the required harvested energy is analyzed. The second line of research in this thesis focuses on wireless-powered communication devices that operate based on harvest-then-transmit protocol. Optimal time allocation for the downlink and uplink operation interval are identified formulating throughput maximization and energy-efficiency maximization problems. In addition, the performance gain among various types of downlink-uplink operation protocols is analyzed taking into account statistical QoS constraints. Furthermore, the performance analysis of energy harvesting user equipment is extended to full-duplex wireless information and power transfer as well as cellular networks. In full-duplex operation, optimal power control policies are identified, and the significance of introducing non-zero mean component on the information-bearing signal is analyzed. Meanwhile, SINR coverage probabilities, average throughput and energy efficiency are explicitly characterized for wireless-powered cellular networks, and the impact of downlink SWIPT and uplink mmWave schemes are addressed. In the final part of the thesis, energy efficiency is considered as the performance metric, and time allocation strategies that maximize energy efficiency for wireless powered communication networks with non-orthogonal multiple access scheme are determined. Low complex algorithms are proposed based on Dinkelbach’s method. In addition, the impact of statistical QoS constraints imposed as limitations on the buffer violation probabilities is addressed

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks
    corecore