2,374 research outputs found

    On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms

    Full text link
    This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized

    High order variational integrators in the optimal control of mechanical systems

    Get PDF
    In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.Comment: 25 pages, 9 figures, 1 table, submitted to DCDS-

    C1-continuous space-time discretization based on Hamilton's law of varying action

    Full text link
    We develop a class of C1-continuous time integration methods that are applicable to conservative problems in elastodynamics. These methods are based on Hamilton's law of varying action. From the action of the continuous system we derive a spatially and temporally weak form of the governing equilibrium equations. This expression is first discretized in space, considering standard finite elements. The resulting system is then discretized in time, approximating the displacement by piecewise cubic Hermite shape functions. Within the time domain we thus achieve C1-continuity for the displacement field and C0-continuity for the velocity field. From the discrete virtual action we finally construct a class of one-step schemes. These methods are examined both analytically and numerically. Here, we study both linear and nonlinear systems as well as inherently continuous and discrete structures. In the numerical examples we focus on one-dimensional applications. The provided theory, however, is general and valid also for problems in 2D or 3D. We show that the most favorable candidate -- denoted as p2-scheme -- converges with order four. Thus, especially if high accuracy of the numerical solution is required, this scheme can be more efficient than methods of lower order. It further exhibits, for linear simple problems, properties similar to variational integrators, such as symplecticity. While it remains to be investigated whether symplecticity holds for arbitrary systems, all our numerical results show an excellent long-term energy behavior.Comment: slightly condensed the manuscript, added references, numerical results unchange

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Discrete mechanics and optimal control: An analysis

    Get PDF
    The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure
    corecore