21,989 research outputs found

    Compiler analysis for trace-level speculative multithreaded architectures

    Get PDF
    Trace-level speculative multithreaded processors exploit trace-level speculation by means of two threads working cooperatively. One thread, called the speculative thread, executes instructions ahead of the other by speculating on the result of several traces. The other thread executes speculated traces and verifies the speculation made by the first thread. In this paper, we propose a static program analysis for identifying candidate traces to be speculated. This approach identifies large regions of code whose live-output values may be successfully predicted. We present several heuristics to determine the best opportunities for dynamic speculation, based on compiler analysis and program profiling information. Simulation results show that the proposed trace recognition techniques achieve on average a speed-up close to 38% for a collection of SPEC2000 benchmarks.Peer ReviewedPostprint (published version

    Trace-level speculative multithreaded architecture

    Get PDF
    This paper presents a novel microarchitecture to exploit trace-level speculation by means of two threads working cooperatively in a speculative and non-speculative way respectively. The architecture presents two main benefits: (a) no significant penalties are introduced in the presence of a misspeculation and (b) any type of trace predictor can work together with this proposal. In this way, aggressive trace predictors can be incorporated since misspeculations do not introduce significant penalties. We describe in detail TSMA (trace-level speculative multithreaded architecture) and present initial results to show the benefits of this proposal. We show how simple trace predictors achieve significant speed-up in the majority of cases. Results of a simple trace speculation mechanism show an average speed-up of 16%.Peer ReviewedPostprint (published version

    Software trace cache

    Get PDF
    We explore the use of compiler optimizations, which optimize the layout of instructions in memory. The target is to enable the code to make better use of the underlying hardware resources regardless of the specific details of the processor/architecture in order to increase fetch performance. The Software Trace Cache (STC) is a code layout algorithm with a broader target than previous layout optimizations. We target not only an improvement in the instruction cache hit rate, but also an increase in the effective fetch width of the fetch engine. The STC algorithm organizes basic blocks into chains trying to make sequentially executed basic blocks reside in consecutive memory positions, then maps the basic block chains in memory to minimize conflict misses in the important sections of the program. We evaluate and analyze in detail the impact of the STC, and code layout optimizations in general, on the three main aspects of fetch performance; the instruction cache hit rate, the effective fetch width, and the branch prediction accuracy. Our results show that layout optimized, codes have some special characteristics that make them more amenable for high-performance instruction fetch. They have a very high rate of not-taken branches and execute long chains of sequential instructions; also, they make very effective use of instruction cache lines, mapping only useful instructions which will execute close in time, increasing both spatial and temporal locality.Peer ReviewedPostprint (published version

    On the functional test of the BTB logic in pipelined and superscalar processors

    Get PDF
    Electronic systems are increasingly used for safety-critical applications, where the effects of faults must be taken under control and hopefully avoided. For this purpose, test of manufactured devices is particularly important, both at the end of the production line and during the operational phase. This paper describes a method to test the logic implementing the Branch Prediction Unit in pipelined and superscalar processors when this follows the Branch Target Buffer (BTB) architecture; the proposed approach is functional, i.e., it is based on forcing the processor to execute a suitably devised test program and observing the produced results. Experimental results are provided on the DLX processor, showing that the method can achieve a high value of stuck-at fault coverage while also testing the memory in the BT

    A VHDL model of a superscalar implementation of the DLX instruction set architcture

    Get PDF
    The complexity of today\u27s microprocessors demands that designers have an extensive knowledge of superscalar design techniques; this knowledge is difficult to acquire outside of a professional design team. Presently, there are a limited number of adequate resources available for the student, both in textual and model form. The limited number of options available emphasizes the need for more models and simulators, allowing students the opportunity to learn more about superscalar designs prior to entering the work force. This thesis details the design and implementation of a superscalar version of the DLX instruction set architecture in behavioral VHDL. The branch prediction strategy, instruction issue model, and hazard avoidance techniques are all issues critical to superscalar processor design and are studied in this thesis. Preliminary test results demonstrate that the performance advantage of the superscalar processor is applicable even to short test sequences. Initial findings have shown a performance improvement of 26% to 57% for instruction sequences under 150 instructions
    • …
    corecore