212 research outputs found

    Constructive pointfree topology eliminates non-constructive representation theorems from Riesz space theory

    Get PDF
    In Riesz space theory it is good practice to avoid representation theorems which depend on the axiom of choice. Here we present a general methodology to do this using pointfree topology. To illustrate the technique we show that almost f-algebras are commutative. The proof is obtained relatively straightforward from the proof by Buskes and van Rooij by using the pointfree Stone-Yosida representation theorem by Coquand and Spitters

    Gabriel-Ulmer duality for topoi and its relation with site presentations

    Full text link
    Let κ\kappa be a regular cardinal. We study Gabriel-Ulmer duality when one restricts the 2-category of locally κ\kappa-presentable categories with κ\kappa-accessible right adjoints to its locally full sub-2-category of κ\kappa-presentable Grothendieck topoi with geometric κ\kappa-accessible morphisms. In particular, we provide a full understanding of the locally full sub-2-category of the 2-category of κ\kappa-small cocomplete categories with κ\kappa-colimit preserving functors arising as the corresponding 2-category of presentations via the restriction. We analyse the relation of these presentations of Grothendieck topoi with site presentations and we show that the 2-category of locally κ\kappa-presentable Grothendieck topoi with geometric κ\kappa-accessible morphisms is a reflective sub-bicategory of the full sub-2-category of the 2-category of sites with morphisms of sites genearated by the weakly κ\kappa-ary sites in the sense of Shulman [37].Comment: 25 page

    Regular Functors and Relative Realizability Categories

    Full text link
    Relative realizability toposes satisfy a universal property that involves regular functors to other categories. We use this universal property to define what relative realizability categories are, when based on other categories than of the topos of sets. This paper explains the property and gives a construction for relative realizability categories that works for arbitrary base Heyting categories. The universal property shows us some new geometric morphisms to relative realizability toposes too

    First steps in synthetic guarded domain theory: step-indexing in the topos of trees

    Get PDF
    We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S. Moreover, we give an axiomatic categorical treatment of models of synthetic guarded domain theory and prove that, for any complete Heyting algebra A with a well-founded basis, the topos of sheaves over A forms a model of synthetic guarded domain theory, generalizing the results for S

    Groupoid sheaves as quantale sheaves

    Get PDF
    Several notions of sheaf on various types of quantale have been proposed and studied in the last twenty five years. It is fairly standard that for an involutive quantale Q satisfying mild algebraic properties the sheaves on Q can be defined to be the idempotent self-adjoint Q-valued matrices. These can be thought of as Q-valued equivalence relations, and, accordingly, the morphisms of sheaves are the Q-valued functional relations. Few concrete examples of such sheaves are known, however, and in this paper we provide a new one by showing that the category of equivariant sheaves on a localic etale groupoid G (the classifying topos of G) is equivalent to the category of sheaves on its involutive quantale O(G). As a means towards this end we begin by replacing the category of matrix sheaves on Q by an equivalent category of complete Hilbert Q-modules, and we approach the envisaged example where Q is an inverse quantal frame O(G) by placing it in the wider context of stably supported quantales, on one hand, and in the wider context of a module theoretic description of arbitrary actions of \'etale groupoids, both of which may be interesting in their own right.Comment: 62 pages. Structure of preprint has changed. It now contains the contents of former arXiv:0807.3859 (withdrawn), and the definition of Q-sheaf applies only to inverse quantal frames (Hilbert Q-modules with enough sections are given no special name for more general quantales
    corecore