31 research outputs found

    Trends in Computer Network Modeling Towards the Future Internet

    Get PDF
    This article provides a taxonomy of current and past network modeling efforts. In all these efforts over the last few years we see a trend towards not only describing the network, but connected devices as well. This is especially current given the many Future Internet projects, which are combining different models, and resources in order to provide complete virtual infrastructures to users. An important mechanism for managing complexity is the creation of an abstract model, a step which has been undertaken in computer networks too. The fact that more and more devices are network capable, coupled with increasing popularity of the Internet, has made computer networks an important focus area for modeling. The large number of connected devices creates an increasing complexity which must be harnessed to keep the networks functioning. Over the years many different models for computer networks have been proposed, and used for different purposes. While for some time the community has moved away from the need of full topology exchange, this requirement resurfaced for optical networks. Subsequently, research on topology descriptions has seen a rise in the last few years. Many different models have been created and published, yet there is no publication that shows an overview of the different approaches.

    A model for assessing and reporting network performance measurement in SANReN

    Get PDF
    The performance measurement of a service provider network is an important activity. It is required for the smooth operation of the network as well as for reporting and planning. SANReN is a service provider tasked with serving the research and education network of South Africa. It currently has no structure or process for determining network performance metrics to measure the performance of its network. The objective of this study is to determine, through a process or structure, which metrics are best suited to the SANReN environment. This study is conducted in 3 phases in order to discover and verify the solution to this problem. The phases are "Contextualisation", "Design",and "Verification". The "Contextualisation" phase includes the literature review. This provides the context for the problem area but also serves as a search function for the solution. This study adopts the design science research paradigm which requires the creation of an artefact. The "Design" phase involves the creation of the conceptual network performance measurement model. This is the artefact and a generalised model for determining the network performance metrics for an NREN. To prove the utility of the model it is implemented in the SANReN environment. This is done in the "Verification" phase. The network performance measurement model proposes a process to determine network performance metrics. This process includes getting NREN requirements and goals, defining the NRENs network design goals through these requirements, define network performance metrics from these goals, evaluating the NRENs monitoring capability, and measuring what is possible. This model provides a starting point for NRENs to determine network performance metrics tailored to its environment. This is done in the SANReN environment as a proof of concept. The utility of the model is shown through the implementation in the SANReN environment thus it can be said that it is generic.The tools that monitor the performance of the SANReN network are used to retrieve network performance data from. Through understanding the requirements, determining network design goals and performance metrics, and determining the gap the retrieving of results took place. These results are analysed and finally aggregated to provide information that feeds into SANReN reporting and planning processes. A template is provided to do the aggregation of metric results. This template provides the structure to enable metrics results aggregation but leaves the categories or labels for the reporting and planning sections blank. These categories are specific to each NREN. At this point SANReN has the aggregated information to use for planning and reporting. The model is verified and thus the study’s main research objective is satisfied

    PerfSONAR: A Service Oriented Architecture for Multi-domain Network Monitoring

    Full text link
    Abstract. In the area of network monitoring a lot of tools are already available to measure a variety of metrics. However, these tools are often limited to a single administrative domain so that no established methodology for the monitoring of network connections spanning over multiple domains currently exists. In addition, these tools only monitor the network from a technical point of view without providing meaningful network performance indicators for different user groups. These indicators should be derived from the measured basic metrics. In this paper a Service Oriented Architecture is presented which is able to perform multi-domain measurements without being limited to specific kinds of metrics. A Service Oriented Architecture has been chosen as it allows for increased flexibility and scalability in comparison to traditional software engineering techniques. The resulting measurement framework will be applied for measurement
    corecore