5 research outputs found

    Nanorouter awareness in flow-guided nanocommunication networks

    Get PDF
    Flow-guided electromagnetic nanonetworks will enable innovative medical applications for monitoring, information gathering, and data transmission inside the human body. These nanonetworks will have to operate under extreme computational and powering-related constraints, and in very hostile environments inside human vascular systems. Under these circumstances, successful transmissions between in-body nanonodes and an on-body nanorouter rarely occur, thus requiring new approaches to improve the network throughput in this scenario. Along this view, in classical flow-guided nanonetworks the nanonodes are envisioned to transmit packets if they have enough energy for the transmission, regardless of their vicinity to the nanorouter. In this paper, we propose a nanorouter awareness model that can provide significant throughput gains compared to the baseline based on blind transmissions, facilitating the roll-out of nanocommunication-supported medical applications.This work was supported by project “AriSe2: Future IoT Networks and Nano-networks (FINe)”, ref. PID2020-116329GB-C22 (AEI/FEDER, UE). This work was supported in part by the Fundación Séneca, Región de Murcia, through the ATENTO Project, under Grant 20889/PI/18, and in part by the LIFE project (Fondo SUPERA Covid-19 funded by the Agencia Estatal Consejo Superior de Investigaciones Científicas CSIC, Universidades Españolas, and Banco Santander). The author Filip Lemic was supported by the EU Marie Curie Actions Individual Fellowship project entitiled “Scalable Localization-enabled In-body Terahertz Nanonetwork” (ScaLeITN), grant nr. 893760

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Energy Harvesting-Aware Design for Wireless Nanonetworks

    Get PDF
    Nanotechnology advancement promises to enable a new era of computing and communication devices by shifting micro scale chip design to nano scale chip design. Nanonetworks are envisioned as artifacts of nanotechnology in the domain of networking and communication. These networks will consist of nodes of nanometer to micrometer in size, with a communication range up to 1 meter. These nodes could be used in various biomedical, industrial, and environmental monitoring applications, where a nanoscale level of sensing, monitoring, control and communication is required. The special characteristics of nanonetworks require the revisiting of network design. More specifically, nanoscale limitations, new paradigms of THz communication, and power supply via energy harvesting are the main issues that are not included in traditional network design methods. In this regard, this dissertation investigates and develops some solutions in the realization of nanonetworks. Particularly, the following major solutions are investigated. (I) The energy harvesting and energy consumption processes are modeled and evaluated simultaneously. This model includes the stochastic nature of energy arrival as well as the pulse-based communication model for energy consumption. The model identifies the effect of various parameters in this joint process. (II) Next, an optimization problem is developed to find the best combination of these parameters. Specifically, optimum values for packet size, code weight, and repetition are found in order to minimize the energy consumption while satisfying some application requirements (i.e., delay and reliability). (III) An optimum policy for energy consumption to achieve the maximum utilization of harvested energy is developed. The goal of this scheme is to take advantage of available harvested energy as much as possible while satisfying defined performance metrics. (IV) A communication scheme that tries to maximize the data throughput via a distributed and scalable coordination while avoiding the collision among neighbors is the last problem to be investigated. The goal is to design an energy harvesting-aware and distributed mechanism that could coordinate data transmission among neighbors. (V) Finally, all these solutions are combined together to create a data link layer model for nanonodes. We believe resolving these issues could be the first step towards an energy harvesting-aware network design for wireless nanosensor networks

    Error control in bacterial quorum communications

    Get PDF
    Quorum sensing (QS) is used to describe the communication between bacterial cells, whereby a coordinated population response is controlled through the synthesis, accumulation and subsequent sensing of specific diffusible chemical signals called autoinducers, enabling a cluster of bacteria to regulate gene expression and behavior collectively and synchronously, and assess their own population. As a promising method of molecular communication (MC), bacterial populations can be programmed as bio-transceivers to establish information transmission using molecules. In this work, to investigate the key features for MC, a bacterial QS system is introduced, which contains two clusters of bacteria, specifically Vibrio fischeri, as the transmitter node and receiver node, and the diffusive channel. The transmitted information is represented by the concentration of autoinducers with on-off keying (OOK) modulation. In addition, to achieve better reliability and energy efficiency, different error control techniques, including forward error correction (FEC) and Automatic Repeat reQuest (ARQ) are taken into consideration. For FEC, this work presents a comparison of the performance of traditional Hamming codes, Minimum Energy Codes (MEC) and Luby Transform (LT) codes over the channel. In addition, it applied several ARQ protocols, namely Stop-N-Wait (SW-ARQ), Go-Back-N (GBN-ARQ), and Selective-Repeat (SR-ARQ) combined with error detection codes to achieve better reliability. Results show that both the FEC and ARQ techniques can enhance the channel reliability, and that ARQ can resolve the issue of out-of-sequence and duplicate packet delivery. Moreover, this work further addresses the question of optimal frame size for data communication in this channel capacity and energy constrained bacterial quorum communication system. A novel energy model which is constructed using the experimental validated synthetic logic gates has been proposed to help with the optimization process. The optimal fixed frame length is determined for a set of channel parameters by maximizing the throughput and energy efficiency matrix
    corecore