305,011 research outputs found

    Non-locality and Communication Complexity

    Get PDF
    Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.Comment: Survey paper, 63 pages LaTeX. A reformatted version will appear in Reviews of Modern Physic

    2008 Abstracts Collection -- IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

    Get PDF
    This volume contains the proceedings of the 28th international conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008), organized under the auspices of the Indian Association for Research in Computing Science (IARCS)

    From quantum-codemaking to quantum code-breaking

    Get PDF
    This is a semi-popular overview of quantum entanglement as an important physical resource in the field of data security and quantum computing. After a brief outline of entanglement's key role in philosophical debates about the meaning of quantum mechanics I describe its current impact on both cryptography and cryptanalysis. The paper is based on the lecture given at the conference "Geometric Issues in the Foundations of Science" (Oxford, June 1996) in honor of Roger Penrose.Comment: 21 pages, LaTeX2e, psfig, multi3.cls, 1 eps figur

    Quantum Mechanics with Trajectories: Quantum Trajectories and Adaptive Grids

    Get PDF
    Although the foundations of the hydrodynamical formulation of quantum mechanics were laid over 50 years ago, it has only been within the past few years that viable computational implementations have been developed. One approach to solving the hydrodynamic equations uses quantum trajectories as the computational tool. The trajectory equations of motion are described and methods for implementation are discussed, including fitting of the fields to gaussian clusters.Comment: Prepared for CiSE, Computing in Science and Engineering IEEE/AIP special issue on computational chemistr

    Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

    Get PDF
    A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.Comment: 28 pages, LaTeX. This is an expanded version of a paper that appeared in the Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20--22, 1994. Minor revisions made January, 199

    A Faster Distributed Single-Source Shortest Paths Algorithm

    Full text link
    We devise new algorithms for the single-source shortest paths (SSSP) problem with non-negative edge weights in the CONGEST model of distributed computing. While close-to-optimal solutions, in terms of the number of rounds spent by the algorithm, have recently been developed for computing SSSP approximately, the fastest known exact algorithms are still far away from matching the lower bound of Ω~(n+D) \tilde \Omega (\sqrt{n} + D) rounds by Peleg and Rubinovich [SIAM Journal on Computing 2000], where n n is the number of nodes in the network and D D is its diameter. The state of the art is Elkin's randomized algorithm [STOC 2017] that performs O~(n2/3D1/3+n5/6) \tilde O(n^{2/3} D^{1/3} + n^{5/6}) rounds. We significantly improve upon this upper bound with our two new randomized algorithms for polynomially bounded integer edge weights, the first performing O~(nD) \tilde O (\sqrt{n D}) rounds and the second performing O~(nD1/4+n3/5+D) \tilde O (\sqrt{n} D^{1/4} + n^{3/5} + D) rounds. Our bounds also compare favorably to the independent result by Ghaffari and Li [STOC 2018]. As side results, we obtain a (1+ϵ) (1 + \epsilon) -approximation O~((nD1/4+D)/ϵ) \tilde O ((\sqrt{n} D^{1/4} + D) / \epsilon) -round algorithm for directed SSSP and a new work/depth trade-off for exact SSSP on directed graphs in the PRAM model.Comment: Presented at the the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018
    • …
    corecore