243 research outputs found

    New bounds on the average distance from the Fermat-Weber center of a planar convex body

    Full text link
    The Fermat-Weber center of a planar body QQ is a point in the plane from which the average distance to the points in QQ is minimal. We first show that for any convex body QQ in the plane, the average distance from the Fermat-Weber center of QQ to the points of QQ is larger than 1/6Δ(Q){1/6} \cdot \Delta(Q), where Δ(Q)\Delta(Q) is the diameter of QQ. This proves a conjecture of Carmi, Har-Peled and Katz. From the other direction, we prove that the same average distance is at most 2(43)13Δ(Q)<0.3490Δ(Q)\frac{2(4-\sqrt3)}{13} \cdot \Delta(Q) < 0.3490 \cdot \Delta(Q). The new bound substantially improves the previous bound of 233Δ(Q)0.3849Δ(Q)\frac{2}{3 \sqrt3} \cdot \Delta(Q) \approx 0.3849 \cdot \Delta(Q) due to Abu-Affash and Katz, and brings us closer to the conjectured value of 1/3Δ(Q){1/3} \cdot \Delta(Q). We also confirm the upper bound conjecture for centrally symmetric planar convex bodies.Comment: 13 pages, 2 figures. An earlier version (now obsolete): A. Dumitrescu and Cs. D. T\'oth: New bounds on the average distance from the Fermat-Weber center of a planar convex body, in Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009), 2009, LNCS 5878, Springer, pp. 132-14

    Semidefinite Representation of the kk-Ellipse

    Full text link
    The kk-ellipse is the plane algebraic curve consisting of all points whose sum of distances from kk given points is a fixed number. The polynomial equation defining the kk-ellipse has degree 2k2^k if kk is odd and degree 2k(kk/2)2^k{-}\binom{k}{k/2} if kk is even. We express this polynomial equation as the determinant of a symmetric matrix of linear polynomials. Our representation extends to weighted kk-ellipses and kk-ellipsoids in arbitrary dimensions, and it leads to new geometric applications of semidefinite programming.Comment: 16 pages, 5 figure

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Approximating Median Points in a Convex Polygon

    Full text link
    We develop two simple and efficient approximation algorithms for the continuous kk-medians problems, where we seek to find the optimal location of kk facilities among a continuum of client points in a convex polygon CC with nn vertices in a way that the total (average) Euclidean distance between clients and their nearest facility is minimized. Both algorithms run in O(n+k+klogn)\mathcal{O}(n + k + k \log n) time. Our algorithms produce solutions within a factor of 2.002 of optimality. In addition, our simulation results applied to the convex hulls of the State of Massachusetts and the Town of Brookline, MA show that our algorithms generally perform within a range of 5\% to 22\% of optimality in practice

    On the Fermat-Weber Point of a Polygonal Chain and Its Generalizations

    Get PDF
    In this paper, we study the properties of the Fermat-Weber point for a set of fixed points, whose arrangement coincides with the vertices of a regular polygonal chain. A k-chain of a regular n-gon is the segment of the boundary of the regular n-gon formed by a set of k (≤ n) consecutive vertices of the regular n-gon. We show that for every odd positive integer k, there exists an integer N(k), such that the Fermat-Weber point of a set of k fixed points lying on the vertices a k-chain of a n-gon coincides with a vertex of the chain whenever n ≥ N(k). We also show that ⌈πm(m + 1) - π2/4⌉ ≤ N(k) ≤ ⌊πm(m + 1) + 1⌋, where k (= 2m + 1) is any odd positive integer. We then extend this result to a more general family of point set, and give an O(hk log k) time algorithm for determining whether a given set of k points, having h points on the convex hull, belongs to such a family

    Certified Approximation Algorithms for the Fermat Point and n-Ellipses

    Get PDF
    Given a set A of n points in ?^d with weight function w: A??_{> 0}, the Fermat distance function is ?(x): = ?_{a?A}w(a)?x-a?. A classic problem in facility location dating back to 1643, is to find the Fermat point x*, the point that minimizes the function ?. We consider the problem of computing a point x?* that is an ?-approximation of x* in the sense that ?x?*-x*? ?(x*) and d = 2. Finally, all our planar (d = 2) algorithms are implemented in order to experimentally evaluate them, using both synthetic as well as real world datasets. These experiments show the practicality of our techniques
    corecore