46 research outputs found

    On the Fermat-Weber Point of a Polygonal Chain and Its Generalizations

    Get PDF
    In this paper, we study the properties of the Fermat-Weber point for a set of fixed points, whose arrangement coincides with the vertices of a regular polygonal chain. A k-chain of a regular n-gon is the segment of the boundary of the regular n-gon formed by a set of k (≤ n) consecutive vertices of the regular n-gon. We show that for every odd positive integer k, there exists an integer N(k), such that the Fermat-Weber point of a set of k fixed points lying on the vertices a k-chain of a n-gon coincides with a vertex of the chain whenever n ≥ N(k). We also show that ⌈πm(m + 1) - π2/4⌉ ≤ N(k) ≤ ⌊πm(m + 1) + 1⌋, where k (= 2m + 1) is any odd positive integer. We then extend this result to a more general family of point set, and give an O(hk log k) time algorithm for determining whether a given set of k points, having h points on the convex hull, belongs to such a family

    Geometric partitioning algorithms for fair division of geographic resources

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2014. Major: Industrial and Systems Engineering. Advisor: John Gunnar Carlsson. 1 computer file (PDF): vi, 140 pages, appendices p. 129-140.This dissertation focuses on a fundamental but under-researched problem: how does one divide a piece of territory into smaller pieces in an efficient way? In particular, we are interested in \emph{map segmentation problem} of partitioning a geographic region into smaller subregions for allocating resources or distributing a workload among multiple agents. This work would result in useful solutions for a variety of fundamental problems, ranging from congressional districting, facility location, and supply chain management to air traffic control and vehicle routing. In a typical map segmentation problem, we are given a geographic region RR, a probability density function defined on RR (representing, say population density, distribution of a natural resource, or locations of clients) and a set of points in RR (representing, say service facilities or vehicle depots). We seek a \emph{partition} of RR that is a collection of disjoint sub-regions {R1,...,Rn}\{R_1, . . . , R_n\} such that ⋃iRi=R\bigcup_i R_i = R, that optimizes some objective function while satisfying a shape condition. As examples of shape conditions, we may require that all sub-regions be compact, convex, star convex, simply connected (not having holes), connected, or merely measurable.Such problems are difficult because the search space is infinite-dimensional (since we are designing boundaries between sub-regions) and because the shape conditions are generally difficult to enforce using standard optimization methods. There are also many interesting variants and extensions to this problem. It is often the case that the optimal partition for a problem changes over time as new information about the region is collected. In that case, we have an \emph{online} problem and we must re-draw the sub-region boundaries as time progresses. In addition, we often prefer to construct these sub-regions in a \emph{decentralized} fashion: that is, the sub-region assigned to agent ii should be computable using only local information to agent ii (such as nearby neighbors or information about its surroundings), and the optimal boundary between two sub-regions should be computable using only knowledge available to those two agents.This dissertation is an attempt to design geometric algorithms aiming to solve the above mentioned problems keeping in view the various design constraints. We describe the drawbacks of the current approach to solving map segmentation problems, its ineffectiveness to impose geometric shape conditions and its limited utility in solving the online version of the problem. Using an intrinsically interdisciplinary approach, combining elements from variational calculus, computational geometry, geometric probability theory, and vector space optimization, we present an approach where we formulate the problems geometrically and then use a fast geometric algorithm to solve them. We demonstrate our success by solving problems having a particular choice of objective function and enforcing certain shape conditions. In fact, it turns out that such methods actually give useful insights and algorithms into classical location problems such as the continuous kk-medians problem, where the aim is to find optimal locations for facilities. We use a map segmentation technique to present a constant factor approximation algorithm to solve the continuous kk-medians problem in a convex polygon. We conclude this thesis by describing how we intend to build on this success and develop algorithms to solve larger classes of these problems

    An Invitation to Generalized Minkowski Geometry

    Get PDF
    The present thesis contributes to the theory of generalized Minkowski spaces as a continuation of Minkowski geometry, i.e., the geometry of finite-dimensional normed spaces over the field of real numbers. In a generalized Minkowski space, distance and length measurement is provided by a gauge, whose definition mimics the definition of a norm but lacks the symmetry requirement. This seemingly minor change in the definition is deliberately chosen. On the one hand, many techniques from Minkowski spaces can be adapted to generalized Minkowski spaces because several phenomena in Minkowski geometry simply do not depend on the symmetry of distance measurement. On the other hand, the possible asymmetry of the distance measurement set up by gauges is nonetheless meaningful and interesting for applications, e.g., in location science. In this spirit, the presentation of this thesis is led mainly by minimization problems from convex optimization and location science which are appealing to convex geometers, too. In addition, we study metrically defined objects, which may receive a new interpretation when we measure distances asymmetrically. To this end, we use a combination of methods from convex analysis and convex geometry to relate the properties of these objects to the shape of the unit ball of the generalized Minkowski space under consideration

    Algorithms for Geometric Covering and Piercing Problems

    Get PDF
    This thesis involves the study of a range of geometric covering and piercing problems, where the unifying thread is approximation using disks. While some of the problems addressed in this work are solved exactly with polynomial time algorithms, many problems are shown to be at least NP-hard. For the latter, approximation algorithms are the best that we can do in polynomial time assuming that P is not equal to NP. One of the best known problems involving unit disks is the Discrete Unit Disk Cover (DUDC) problem, in which the input consists of a set of points P and a set of unit disks in the plane D, and the objective is to compute a subset of the disks of minimum cardinality which covers all of the points. Another perspective on the problem is to consider the centre points (denoted Q) of the disks D as an approximating set of points for P. An optimal solution to DUDC provides a minimal cardinality subset Q*, a subset of Q, so that each point in P is within unit distance of a point in Q*. In order to approximate the general DUDC problem, we also examine several restricted variants. In the Line-Separable Discrete Unit Disk Cover (LSDUDC) problem, P and Q are separated by a line in the plane. We write that l^- is the half-plane defined by l containing P, and l^+ is the half-plane containing Q. LSDUDC may be solved exactly in O(m^2n) time using a greedy algorithm. We augment this result by describing a 2-approximate solution for the Assisted LSDUDC problem, where the union of all disks centred in l^+ covers all points in P, but we consider using disks centred in l^- as well to try to improve the solution. Next, we describe the Within-Strip Discrete Unit Disk Cover (WSDUDC) problem, where P and Q are confined to a strip of the plane of height h. We show that this problem is NP-complete, and we provide a range of approximation algorithms for the problem with trade-offs between the approximation factor and running time. We outline approximation algorithms for the general DUDC problem which make use of the algorithms for LSDUDC and WSDUDC. These results provide the fastest known approximation algorithms for DUDC. As with the WSDUDC results, we present a set of algorithms in which better approximation factors may be had at the expense of greater running time, ranging from a 15-approximate algorithm which runs in O(mn + m log m + n log n) time to a 18-approximate algorithm which runs in O(m^6n+n log n) time. The next problems that we study are Hausdorff Core problems. These problems accept an input polygon P, and we seek a convex polygon Q which is fully contained in P and minimizes the Hausdorff distance between P and Q. Interestingly, we show that this problem may be reduced to that of computing the minimum radius of disk, call it k_opt, so that a convex polygon Q contained in P intersects all disks of radius k_opt centred on the vertices of P. We begin by describing a polynomial time algorithm for the simple case where P has only a single reflex vertex. On general polygons, we provide a parameterized algorithm which performs a parametric search on the possible values of k_opt. The solution to the decision version of the problem, i.e. determining whether there exists a Hausdorff Core for P given k_opt, requires some novel insights. We also describe an FPTAS for the decision version of the Hausdorff Core problem. Finally, we study Generalized Minimum Spanning Tree (GMST) problems, where the input consists of imprecise vertices, and the objective is to select a single point from each imprecise vertex in order to optimize the weight of the MST over the points. In keeping with one of the themes of the thesis, we begin by using disks as the imprecise vertices. We show that the minimization and maximization versions of this problem are NP-hard, and we describe some parameterized and approximation algorithms. Finally, we look at the case where the imprecise vertices consist of just two vertices each, and we show that the minimization version of the problem (which we call 2-GMST) remains NP-hard, even in the plane. We also provide an algorithm to solve the 2-GMST problem exactly if the combinatorial structure of the optimal solution is known. We identify a number of open problems in this thesis that are worthy of further study. Among them: Is the Assisted LSDUDC problem NP-complete? Can the WSDUDC results be used to obtain an improved PTAS for DUDC? Are there classes of polygons for which the determination of the Hausdorff Core is easy? Is there a PTAS for the maximum weight GMST problem on (unit) disks? Is there a combinatorial approximation algorithm for the 2-GMST problem (particularly with an approximation factor under 4)

    Discrete Geometry and Convexity in Honour of Imre Bárány

    Get PDF
    This special volume is contributed by the speakers of the Discrete Geometry and Convexity conference, held in Budapest, June 19–23, 2017. The aim of the conference is to celebrate the 70th birthday and the scientific achievements of professor Imre Bárány, a pioneering researcher of discrete and convex geometry, topological methods, and combinatorics. The extended abstracts presented here are written by prominent mathematicians whose work has special connections to that of professor Bárány. Topics that are covered include: discrete and combinatorial geometry, convex geometry and general convexity, topological and combinatorial methods. The research papers are presented here in two sections. After this preface and a short overview of Imre Bárány’s works, the main part consists of 20 short but very high level surveys and/or original results (at least an extended abstract of them) by the invited speakers. Then in the second part there are 13 short summaries of further contributed talks. We would like to dedicate this volume to Imre, our great teacher, inspiring colleague, and warm-hearted friend

    On Geometric Range Searching, Approximate Counting and Depth Problems

    Get PDF
    In this thesis we deal with problems connected to range searching, which is one of the central areas of computational geometry. The dominant problems in this area are halfspace range searching, simplex range searching and orthogonal range searching and research into these problems has spanned decades. For many range searching problems, the best possible data structures cannot offer fast (i.e., polylogarithmic) query times if we limit ourselves to near linear storage. Even worse, it is conjectured (and proved in some cases) that only very small improvements to these might be possible. This inefficiency has encouraged many researchers to seek alternatives through approximations. In this thesis we continue this line of research and focus on relative approximation of range counting problems. One important problem where it is possible to achieve significant speedup through approximation is halfspace range counting in 3D. Here we continue the previous research done and obtain the first optimal data structure for approximate halfspace range counting in 3D. Our data structure has the slight advantage of being Las Vegas (the result is always correct) in contrast to the previous methods that were Monte Carlo (the correctness holds with high probability). Another series of problems where approximation can provide us with substantial speedup comes from robust statistics. We recognize three problems here: approximate Tukey depth, regression depth and simplicial depth queries. In 2D, we obtain an optimal data structure capable of approximating the regression depth of a query hyperplane. We also offer a linear space data structure which can answer approximate Tukey depth queries efficiently in 3D. These data structures are obtained by applying our ideas for the approximate halfspace counting problem. Approximating the simplicial depth turns out to be much more difficult, however. Computing the simplicial depth of a given point is more computationally challenging than most other definitions of data depth. In 2D we obtain the first data structure which uses near linear space and can answer approximate simplicial depth queries in polylogarithmic time. As applications of this result, we provide two non-trivial methods to approximate the simplicial depth of a given point in higher dimension. Along the way, we establish a tight combinatorial relationship between the Tukey depth of any given point and its simplicial depth. Another problem investigated in this thesis is the dominance reporting problem, an important special case of orthogonal range reporting. In three dimensions, we solve this problem in the pointer machine model and the external memory model by offering the first optimal data structures in these models of computation. Also, in the RAM model and for points from an integer grid we reduce the space complexity of the fastest known data structure to optimal. Using known techniques in the literature, we can use our results to obtain solutions for the orthogonal range searching problem as well. The query complexity offered by our orthogonal range reporting data structures match the most efficient query complexities known in the literature but our space bounds are lower than the previous methods in the external memory model and RAM model where the input is a subset of an integer grid. The results also yield improved orthogonal range searching in higher dimensions (which shows the significance of the dominance reporting problem). Intersection searching is a generalization of range searching where we deal with more complicated geometric objects instead of points. We investigate the rectilinear disjoint polygon counting problem which is a specialized intersection counting problem. We provide a linear-size data structure capable of counting the number of disjoint rectilinear polygons intersecting any rectilinear polygon of constant size. The query time (as well as some other properties of our data structure) resembles the classical simplex range searching data structures
    corecore