2,410 research outputs found

    FMMRec: Fairness-aware Multimodal Recommendation

    Full text link
    Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec

    Investigating Speaker Embedding Disentanglement on Natural Read Speech

    Full text link
    Disentanglement is the task of learning representations that identify and separate factors that explain the variation observed in data. Disentangled representations are useful to increase the generalizability, explainability, and fairness of data-driven models. Only little is known about how well such disentanglement works for speech representations. A major challenge when tackling disentanglement for speech representations are the unknown generative factors underlying the speech signal. In this work, we investigate to what degree speech representations encoding speaker identity can be disentangled. To quantify disentanglement, we identify acoustic features that are highly speaker-variant and can serve as proxies for the factors of variation underlying speech. We find that disentanglement of the speaker embedding is limited when trained with standard objectives promoting disentanglement but can be improved over vanilla representation learning to some extent.Comment: To be published at 15th ITG conference on speech communicatio

    Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

    Full text link
    The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties ``encouraged'' by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets

    COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation

    Full text link
    Personalized text generation has broad industrial applications, such as explanation generation for recommendations, conversational systems, etc. Personalized text generators are usually trained on user written text, e.g., reviews collected on e-commerce platforms. However, due to historical, social, or behavioral reasons, there may exist bias that associates certain linguistic quality of user written text with the users' protected attributes such as gender, race, etc. The generators can identify and inherit these correlations and generate texts discriminately w.r.t. the users' protected attributes. Without proper intervention, such bias can adversarially influence the users' trust and reliance on the system. From a broader perspective, bias in auto-generated contents can reinforce the social stereotypes about how online users write through interactions with the users. In this work, we investigate the fairness of personalized text generation in the setting of explainable recommendation. We develop a general framework for achieving measure-specific counterfactual fairness on the linguistic quality of personalized explanations. We propose learning disentangled representations for counterfactual inference and develop a novel policy learning algorithm with carefully designed rewards for fairness optimization. The framework can be applied for achieving fairness on any given specifications of linguistic quality measures, and can be adapted to most of existing models and real-world settings. Extensive experiments demonstrate the superior ability of our method in achieving fairness while maintaining high generation performance
    • …
    corecore