3,911 research outputs found

    Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis

    Full text link
    Jupiter's zonal jets and Great Red Spot are well known from still images. Yet the planet's atmosphere is highly unsteady, which suggests that the actual material transport barriers delineating its main features should be time-dependent. Rare video footages of Jupiter's clouds provide an opportunity to verify this expectation from optically reconstructed velocity fields. Available videos, however, provide short-time and temporally aperiodic velocity fields that defy classical dynamical systems analyses focused on asymptotic features. To this end, we use here the recent theory of geodesic transport barriers to uncover finite-time mixing barriers in the wind field extracted from a video captured by NASA's Cassini space mission. More broadly, the approach described here provides a systematic and frame-invariant way to extract dynamic coherent structures from time-resolved remote observations of unsteady continua

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Contattori a Membrana

    Get PDF

    Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments

    Get PDF
    This paper is concerned with the emergence and development of low-to-medium-grade thermal-energy-conversion systems for distributed power generation based on thermo- dynamic vapor-phase heat-engine cycles undergone by organic working uids, namely organic Rankine cycles (ORCs). ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low/medium-grade heat (at temperatures up to ~300–400°C) to useful work, at an output power scale from a few kilowatts to 10s of megawatts. Thermal ef ciencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability and thus uptake of ORC power systems, by focusing on advanced architectures, working- uid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a signi cant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydrau- lic, or electrical energy. Current elds of use include mainly geothermal and biomass/ biogas, as well as the recovery and conversion of waste heat, leading to improved energy ef ciency, primary energy (i.e., fuel) use and emission minimization, yet the technology is highly transferable to solar-power generation as an affordable alternative to small-to- medium-scale photovoltaic systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward onsite (thermal) energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identi ed as noteworthy directions of future research for the further development of this technology

    Flow Behavior And Instabilities In Viscoelastic Fluids: Physical And Biological Systems

    Get PDF
    The flow of complex fluids, especially those containing polymers, is ubiquitous in nature and industry. From blood, plastic melts, to airway mucus, the presence of microstructures such as particles, proteins, and polymers, can impart nonlinear material properties not found in simple fluids like water. These rheological behaviors, in particular viscoelasticity, can give rise to flow anomalies found in industrial settings and intriguing transport dynamics in biological systems. The first part of my work focuses on the flow of viscoelastic fluids in physical systems. Here, I investigate the flow instabilities of viscoelastic fluids in three different geometries and configurations. Realized in microfluidic channels, these experiments mimic flows encountered in technology spanning the oil extraction, pharmaceutical, and chemical industries. In particular, by conducting high-speed velocimetry on the flow of polymeric fluid in a micro-channel, we report evidence of elastic turbulence in a parallel shear flow where the streamline is without curvature. These turbulent-like characteristics include activation of the flow at many time scales, anomalous increase in flow resistance, and enhanced mixing associated with the polymeric flow. Moreover, the spectral characteristics and spatial structures of the velocity fluctuations are different from that in a curved geometry. Measured using novel holographic particle tracking, Lagrangian trajectories show spanwise dispersion and modulations, akin to the traveling waves in the turbulent pipe flow of Newtonian fluids. These curvature perturbations far downstream can generate sufficient hoop stresses to sustain the flow instabilities in the parallel shear flow. The second part of the thesis focuses on the motility and transport of active swimmers in viscoelastic fluids that are relevant to biological systems and human health. In particular, by analyzing the swimming of the bi-flagellated green algae {\it Chlamydomonas reinhardtii} in viscoelastic fluid, we show that fluid elasticity enhances the flagellar beating frequency and the wave speed. Yet the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the non-trivial change in flagellar gait due to elasticity. Numerical simulations show that such change in gait reduces elastic stress build up in the fluid and increases efficiency. These results further illustrate the complex coupling between fluid rheology and swimming gait in the motility of micro-organisms and other biological processes such as mucociliary clearance in mammalian airways
    corecore